
Introduction to Python

Programming in Python using our Raspberry Pi

Connect your raspberry pi and log in (ssh into it).

Note: You can follow this introduction to Python also in your laptop. If it’s a
Mac, simply open the terminal and follow this text. If it’s a Windows computer,
you need first to install Python, then open a powershell and follow this text. In
some Windows machines, Python version 2.7 doesn’t seem to install correctly. If
you have problems, uninstall it and install Python version 3.6 or above.

The Python Interpreter

In the command-line interface (cli) of your Pi, type

pi@rpi3dragon1:~ $ python

You will see something similar to

Python 2.7.13 (default, Apr 28 2017, 15:56:03)
[GCC 4.8.4] on netbsd7
Type "help", "copyright", "credits" or "license" for more information.
>>>

Notice the version of the Python interpreter that you are using. In this example
it is version 2.7 (technically, 2.7.13 but we can safely ignore the last version
number in this context).

The help command of the python interpreter provides access to tons of useful
explanations on different topics related to both, the Python interpreter and
Python as a programming language itself.

>>> help()

Welcome to Python 2.7! This is the online help utility.

If this is your first time using Python, you should definitely check out
the tutorial on the Internet at http://docs.python.org/2.7/tutorial/.

Enter the name of any module, keyword, or topic to get help on writing
Python programs and using Python modules. To quit this help utility and
return to the interpreter, just type "quit".

To get a list of available modules, keywords, or topics, type "modules",
"keywords", or "topics". Each module also comes with a one-line summary
of what it does; to list the modules whose summaries contain a given word

1

such as "spam", type "modules spam".

help> keywords

Here is a list of the Python keywords. Enter any keyword to get more help.

and elif if print
as else import raise
assert except in return
break exec is try
class finally lambda while
continue for not with
def from or yield
del global pass

help>
>>>

The Python prompt

The three > signs form what is called a prompt: The computer is waiting for
you to type in something.

Type 2+3 and press enter. You should see this:

>>> 2+3
5
>>> 2-3
-1

That is, the python interpreter prints out the result of adding 2 and 3.

Additions, Multiplications and Powers

More examples (try them out and check that they do work in your RPi):

>>> 2*3 # Multiplications and additions/subtractions
6
>>> 2*7+4
18
>>> 2*7+4*(4-1)
26
>>> 2**1 # Powers
1
>>> 2**2
4

2

>>> 2**3
8
>>> 2**4
16
>>> pow(2,2) # Another way for calculating powers
4
>>> pow(2,3)
8
>>> pow(2,4)
16
>>> pow(3,2)
9
>>> pow(3,3)
27

Divisions

We can also do divisions. Here things may look different depending on whether
your python interpreter is version 2. something or 3. something.

• Python 2.x:

>>> 13/2 # Integer Divisions
6
>>> 13/2. # Float (Decimal) Divisions
6.5
>>> 13./2
6.5
>>> 13./2.
6.5

The first example works as follows: python interprets the 13 and the 2 as
integers. Then its division just shows the integer value, i.e., it ignores the
remainder and thus the decimals.

However, if any of the two numbers has a “dot”, e.g., 13., then python
shows the full division, that is, including also the decimals.

• Python 3.x: All previous examples yield 6.5. If we just want the integer
results we need to write python int(13/2)

>>> int(13/2)
6

3

Modulo (remainder)

Remainder (or modulo operation): We saw last year what the mod op-
erations means, namely, the remainder of dividing two integers. Let’s see it
again.

Say we want to distribute 8 apples among 5 students, with the constraint that
we aren’t allowed to cut pieces of an apple, but give them away as a whole.
What’s then the number of apples each student gets? Clearly, it’s only 1 and
there will be 3 apples remaining!

We can state this by saying that the remainder of dividing 8 by 5 is 3, and in
mathematics we write this as 8 % 5 = 3.

Python can do this as well:

>>> 8%5
3

Assignments

In JavaScript we saw how to define variables and assign them a value. For
instance, var x = 3. Here x is a label that refers to the value 3 stored somewhere
in the memory of the computer.

Numbers

Here is the way to do that in python

>>> x = 3
>>> x
3

Thus we can define several variables and do operations with them:

>>> x =3
>>> y = 7
>>> x+y
10
>>> x*y
21
>>> y/x
2 (in Python 2. something)
2.33333 (in Python 3. something)
>>> float(y)/x
2.33333 (in all versions of Python)
>>> y**x

4

343
>>> x**y
2187

We see that using float(y) is like adding the dot after 7. That is, float(y)/x
is like doing 7./3 and this, we have seen above, gives the result with decimals.

Strings

We can also assign to variables a string of characters

>>> msg = "Hello World!"
>>> msg
'Hello World!'

There is also a way to “add” strings. It’s not really called “adding strings” but
concatenating strings. Let’s see an example

>>> msg1 = "hi"
>>> msg2 = "jo"
>>> msg1 + msg2
'hijo'
>>> msg2 + msg1
'johi'

As we can see, concatenating means we append the second string at the end of
the first one.

For Loops

In JavaScript we saw how to write a for-loop:

var sum = 0 ;

for(var i = 1 ; i<11 ; i++){
sum = sum + i

}

//this will show the final amount of adding the integers from 1 till 10 which is 55.
alert(sum)

In Python we also have for-loops, although the syntax is slightly different.

In order to see for-loops in Python we need to talk first (or at the same time) of
the command (function) range.

5

The range command

Python has multiple built-in “commands”, or as they are technically called,
functions (we’ll see later what these are).

A very useful one is range.

range(0,3) provides a list of integers starting on the value 0 and ending on 2
-one less that the second number!

The following examples will easily clarify what it does.

Printing the first ten integers

The following is an example of a for loop that iterates over a list of integers, in
this case, from 1 till 10:

>>> for i in range(1,11):
... print(i)
...
1
2
3
4
5
6
7
8
9
10
>>>

Important Remarks:

1. The line containing the for keyword ends in a colon ':'

2. The next line is indented by pressing the tab key once This is very
important: without the indentation this code will not work!!

>>> for i in range(1,11):
... print(i)
File "<stdin>", line 2
print(i)

^
IndentationError: expected an indented block
>>>

3. range(1,11) provides a list of integers starting at 1 and ending at 10
(and not 11) !!

6

That is, it goes from 1 to 11, but excluding this last value.

Question: What will this code do?

>>> for i in range(10,3):
... print(i)
...

Answer: Nothing. The final value provided to range is smaller than the initial
value. Whence, there is no range of increasing integers from 10 to 3; that would
be a decreasing sequence instead!

Question: What will this code do?

>>> for i in range(3,10):
... print(i)
...

Answer: Prints all integers from 3 to 10 without including 10: 3, 4, 5, 6, 7, 8
and 9.

Summing the first 10 integers

>>> sum = 0
>>> for i in range(1,11):
... sum = sum + i
...
>>> sum
55
>>>

Summing the first ten powers of 2

We want to calculate the following sum: 21+22+23+24+25+26+27+28+29+210.

This is a way to do it in Python:

>>> sum = 0
>>> for i in range(1,11):
... sum = sum + 2**i
...
>>> sum
2046
>>>

7

Writing and Running Programs

The Python interpreter comes in very handy for testing short code and ideas,
but it’s totally impractical to write any program with more than a few lines!

But even small, but useful programs will require a few lines at least, as we have
seen. Furthermore, we would like to save time and have not have to repeat
writing the same code everytime we need to do the same or similar calculations.
Clearly, we cannot use the Python interpreter for this.

Instead, we write our code using a text editor and save it into a file with extension
.py. Let’s say we saved it into a file called myprogram1.py which we put inside
a folder called Python which in turn lives inside our CSLab folder.

Then, we open the terminal, change directory (command called cd, remember?)
into that folder Python and from there we type

python myprogram1.py

and press enter.

In order to cover the cases of both Windows and Mac/Linux, the way to type
that command is pressing the tab key after python! (right after the letter
‘n’).

Conditional Expressions

Conditional expressions allow us to make choices. In order to so we need a
special type of value called a boolean type. In most programming languages,
this type is denoted as simply bool.

If a variable, say itRains, is a of type bool, then it can only have two possible
values: True or False. In python, the capital T and F are required!

We already saw Boolean gates (or Boolean operators). We saw things like and,
or, not, xor,.... Python includes some of such operators which we can use
to build elaborate conditions.

Examples:

1. >>> not True
False
>>> not False
True
>>> x = not False
>>> print(x)
True

8

2. >>> usuallyGoodStudent = True
>>> cheated = True
>>> mark = 95
>>> if usuallyGoodStudent and not cheated:
... mark = 100
...
>>> if usuallyGoodStudent and cheated:
... mark = 10
...
>>> print(mark)

Puzzle: What will be printed?

We have also relational and equality operators for comparing values. These are
given in the following table

Symbol Operation
> Greater than
< Smaller than
>= Greater than or equal to
<= Smaller than or equal to
== Equal to
!= Not equal to

In JavaScript we saw than an if-then-else_if-else`` conditional
statement can have thatelseandelse if‘ part that is executed only if the
previous conditions is false.

In Python we also have those two constructions with the only difference that we
don’t write else if but elif.

Examples:

1. if mark == 100:
print("Awesome!")

elif mark >= 90 and mark < 100:
print("Excellent!")

elif mark >= 75 and mark < 90:
print("Very Good!")

elif mark >= 50:
print("Good!")

elif mark >= 50:
print("Good!")

else :
print("You can do it. Let's try again!")

9

Functions

What is a function?

We already saw what the gist of a computer is. It’s the so-called von Neumann
architecture which at its simplest form can be summarized by the following
picture

| |

input -------> | Processing |-------> output

Amazingly enough, a function f can be described by the same picture

| |

x -------> | f |-------> y

Even more amazing is the fact that functions are everywhere around us!

A function is like a manufacturing plant: it takes some raw material in, it process
it and finally delivers a product!

Examples:

1. A petroleum oil refinery takes in oil and produces gasoline.
2. A sugar refinery takes in sugar canes and produces crystallized sugar, that

is, the sugar we used at home.
3. A car manufacturing plant takes in several materials as well as already

built pieces and produces a car.

Examples of functions

Function in Mathematics

When we write in math y = 2 x, x denotes a variable that can take on different
values and for each of those we get a number for y. For instance, when x = 3, y
becomes 6. Other examples: y = 3 x2 − 17 x + 4, y = 2x,. . .

Clearly, in all these cases, the value of y depends on that of x. There is a shorter
way to express this last sentence: Mathematicians say that y is a function of
x.

10

Mathematicians, who are known to be extremely lazy creatures, do not even
write such a sentence; it’s too long for them. Instead of writing “y is a function
of x” they write it as

y = f(x)

Somehow we can read this literally as “y is equal to a function, called ‘f’, of
x”. But, again, a mathematician loves to write a sentence of only 6 characters
instead y = f(x). . .

There are many different functions, and we could give each of them a different
name. In the previous case, that name was quite a short one (remember, very
lazy these mathematicians!), namely, ‘f’!

Examples:

1. y = f(x) = 2 x, y = g(x) = 3 x2 − 17 x + 4 or y = h(x) = 2x, where the
names of the functions are f, g and h, respectively.

2. y = area_of_rectangle(a, b) = a ∗ b, where the (for a mathematician,
very painful) name of the function would be “area_of_rectangle” and
the variables a, b would denote the lengths of each side of a rectangle.
The mathematician way of writing this would, however, be much shorter:
y = g(a, b) = a ∗ b!

Functions in Python

We have already seen a few examples. These come for free with Python -
technically we say they are (already) built-in:

1. print("Hello world"): This prints the string 'Hello world' on screen.
If we write print(3) it prints the number 3.

The input in these examples are the string “Hello World” and the number
3. The output in each case is what we see on the screen.

2. abs(-8) gives 8; abs(8) gives 8; thus abs(x) gives the absolute value of a
number, that is, it ignores any possible sign. The input is here the number
x and the output is its value without sign.

3. min(3,6) gives 3; min(3,-1,7,0,0.1) gives −1; whence min(x,y,z) gives
the smallest (most negative) of x, y and z. Whence, print(min(3,5))
prints 3. The input in the first example is two numbers, 3 and 6 and the
output is 3; in the second example, the input is five numbers, 3,-1,7,0 and
0.1 and the output is −1.

4. Analogously, max(3,-1,7,0,0.1) gives the largest (most positive) of all
provided numbers, which in this case is 7.

5. round(3.141516,2) gives the decimal number 3.141516 rounded off to
only 2 decimal digits, that is, it gives 3.14; round(3.141516,3) gives then
3.142, because the 1 after the 4 gets rounded up to 2 due to the following

11

5; round(3.141516,0) gives 3 and round(3.141516,1) gives 3.1 as the 4
does not round up the first 1.

Input and output

In all previous math examples, we say that x (or a and b) is the input to the
function, and y is the output delivered by that function.

In all the previous python examples, print abs, min, max and round are functions
that take one or more inputs and deliver one output.

Examples:

1. If y = f(x) = 2 x, when we calculate f(3), the input is 3 and the output is
6.

2. If we write in python y=min(3,x) for every input value x, the output y
will be either 3 (if x is equal or larger), or else x (if x is smaller than 3).

Building our own functions in Python

Let’s see this by example.

A first simple function

Let’s write the function given by y = f(x) = 2 x in python. The way to do this
is as follows.

First we need to define the function. This means telling the computer what the
function should do with its input.

def f(x):
return 2*x

The way to type it is:

1. Write the first line def f(x):.
2. After the colon, press enter and then press the tab key in order to

indent all the lines that define the function!
3. After the last line of the definition, press enter twice.

Here def and return are special keywords. The first, def lets the computer know
that what follows is the definition of a function; the second, return, establishes
what the output will be.

In order to put this function in use we simply write for instance

y=f(3)
print(y)

12

and the value of y that gets printed will be 6.

A function’s code

Another example:

def diff2(x,y):
d = abs(x-y)
return f(d)

y = diff2(7,12)
print(y)

The value that gets printed is 10.

This is how it works: in the first line we calculate the absolute value of the
difference between 7 and 12. That’s 5. In the last line, we first make a function
call to f with the value of that difference, i.e., with 5. This function returns the
double of its input, whence it will return a 10. Finally, diff2 returns this 10,
which gets assigned to the variable y and is then printed to screen.

Things to notice:

1. Name of the function: In this case the name is “diff2”
2. Number of parameters: This functions is defined with 2 input parame-

ters denoted by the labels x and y.
3. Indentation of lines after the colon!! This is mandatory, as it is the

only way for the computer to know where the definition of the function
ends!!

4. A function’s code: A function’s code comprises all the lines after the
def line and up to, and including, the last indented line. Whence, in this
case the code of the function diff2 is:

d = abs(x-y)
return f(d)

5. Function call: A function call is when we use a function with specific
values, like 7 and 12 in the line

y=diff2(7,12)

These specific values are called arguments of the function call, or, in
short, arguments of the function, and even shorter, arguments! Here the
arguments are 7 and 12.

6. Function calls inside functions!: We can use any function previously
defined in any part of our code, even inside other functions!! In this
example, we make 2 function calls inside diff2: one to the built-in
function abs and the other to our function f defined above. Here in lies
the power and beauty of using functions in our code!!

13

This example hints at the tremendous advantage of using functions: Defining
functions is like building a toolbox. Any subsequent problem can be solved by
using one or several of those tools, without having to build them again each time!

Solved problems

1. Write a function called sum_n that takes one argument, an integer n and
returns the sum of all numbers from 1 till n, both included. What’s the
output of sum_n(23)?

Solution:

def sum_n(n):
sum = 0
for i in range(1,n+1):

sum = sum + i
return sum

y = sum_n(23)
print(y) # y = 276

2. Write a function called fact that takes as input one integer n and returns
the factorial of n, n!. Note: The factorial of an integer n, denoted as
n!, is the product of all integers from 1 till n both included. Example:
2! = 2 · 1 = 1, 3! = 3 · 2 · 1 = 6, or 5! = 5 · 4 · 3 · 2 · 1 = 120. By definition,
the factorial of zero is 1, i.e., 0! = 1.

Solution:

def fact(n):
if n == 0 : return 1

p = 1
for i in range(1,n+1):

p = p * i
return p

y = fact(5)
print(y) # y = 120

3. Write a function called fibn that takes as input one integer n and returns
the n-th number of the Fibonacci sequence. Note: The Fibonacci sequence
starts as follows: 1 1 2 3 5 8 13 21 34 55 89 144 233 . . .

Solution:

def fibn(n):
fb1 = 1
fb2 = 1
if n < 3 : return 1

14

for i in range(1, n-1):
t = fb2
fb2 = fb1 + fb2
fb = t

return fb2

y = fibn(13)
print(y) # y = 233

Advanced: There is an alternative solution, using somewhat more of an
advanced technique called recursive programming, and the function we
code this way is an example of a recursive function. This entails the use of
the function we are defining in the very same code that defines it.

This can sound paradoxical, like when we use a concept in the definition of
that same concept, or like Esher’s picture of a hand drawing a second hand
which draws the first hand, which draws the second hand, which draws. . .

How does it work? The key is to include first a base condition that breaks
that infinite loop without using recursion, i.e., without calling itself.

def fibn(n):
if n < 3: return 1 # This is the base case. No call to `fibn` here.
return fibn(n-1) + fibn(n-2)

You may understand how this can work by trying to recite out loud the
definition of the factorial of, say, 5 in a recursive way. This would be as
follows: “5 factorial is 5 times 4 factorial; 4 factorial is 4 times 3 factorial;
3 factorial is 3 times 2 factorial; 2 factorial is 2 times 1 factorial; 1 factorial
is 1 times 0 factorial”. But, wait!, here the apparent infinite loop breaks!
The factorial of 0 is simply 1!!

Now we can trace back the full result. Read those sentences for the last
till the first: 1 factorial is 1 times. . . 1, whence 1; 2 factorial is 2 times 1
factorial, whence 2 times 1, thus 2; 3 factorial is 3 times 2 factorial, whence
3 times 2, thus 6; 4 factorial is 4 times 3 factorial, whence 4 times 6, thus
24; and finally, 5 factorial is 5 times 24, thus 120.

4. Write a function called fibsum that takes as input one integer n and returns
the sum of the first n-th Fibonacci numbers

Solution 1: We will use the function fibn that we already wrote.

def fibsum(n):
sum = 0
for i in range(1,n+1):

sum += fib(i)
return sum

15

https://en.wikipedia.org/wiki/Drawing_Hands
https://en.wikipedia.org/wiki/Drawing_Hands

print(fibsum(4)) # prints 7
print(fibsum(13)) # prints 609

Solution 2: We will write the solution from scratch, i.e., without using
the function fibn we already defined.

def fibsum(n):
fb1 = 1
fb2 = 1
sum = 2
if n == 1 : sum = 1
for i in range(3, n+1):

sum = sum + fb1 + fb2
t = fb2
fb2 = fb1 + fb2
fb1 = t

return sum

Clearly, the first solution is much easier to follow and thus understand than the
second one. This illustrates the importance and usefulness of writing functions
and using them instead of repeating their code over and over each time we need
to do the same task!

Assignment 1 Term 2

Due date: Mo. Dec. 18 2017

Basics: Assignments

1. For each of the following expressions, what value will the expression give?
Verify your answers by typing the expressions into Python.
a. 9-3
b. 8*2.5
c. 9/2
d. 9/-2
e. 9//-2
f. 9%2
g. 9.0%2
h. 9%2.0
i. 9%-2
j. -9%2
k. 9/-2.0
l. 4+3*5

m. (4+3)*5

16

2. Unary minus negates a number. Unary plus exists as well; for example,
Python understands +5. If x has the value -17, what do you think +x
should do? Should it leave the sign of the number alone? Should it act
like absolute value, removing any negation? Use the Python shell to find
out its behavior.

3. Write two assignment statements that do the following.
a. Create a new variable, temp, and assign it the value 24.
b. Convert the value in temp from Celsius to Fahrenheit by multiplying

by 1.8 and adding 32; make temp refer to the resulting value. What
is temp’s new value?

4. For each of the following expressions, in which order are the subexpres-
sions evaluated?
a. 6 ∗ 3 + 7 ∗ 4
b. 5 + 3/4
c. 5 − 2 ∗ 3 ∗ ∗4

5. Write the code that does as asked.
a. Create a new variable x, and assign it the value 10.5.
b. Create a new variable y, and assign it the value 4.
c. Sum x and y, and make x refer to the resulting value. After this state-

ment has been executed, what are x and y’s values?
6. Write a bullet list description of what happens when Python evaluates the

statement x += x - x when x has the value 3.
7. When a variable is used before it has been assigned a value, a NameError

occurs. In the Python shell, write an expression that results in a NameError.
8. Which of the following expressions results in SyntaxErrors?

a. 6 * ———–8
b. 8 = people
c. ((((4 ** 3))))
d. (-(-(-(-5))))
e. 4+=7/2

Functions

1. Two of Python’s built-in functions are min and max. In the Python shell,
execute the following function calls:
a. min(2, 3, 4)
b. max(2, -3, 4, 7, -5)
c. max(2, -3, min(4, 7), -5)

2. For the following function calls, in what order are the subexpressions
evaluated?
a. min(max(3, 4), abs(-5))
b. abs(min(4, 6, max(2, 8)))
c. round(max(5.572, 3.258), abs(-2))

3. Following the function design recipe, define a function that has one param-
eter, a number, and returns that number tripled.

17

4. Following the function design recipe, define a function that has two param-
eters, both of which are numbers, and returns the absolute value of the
difference of the two. Hint: Call built-in function abs.

5. Following the function design recipe, define a function that has one param-
eter, a distance in kilometers, and returns the distance in miles. (There
are 1.6 kilometers per mile.)

6. Following the function design recipe, define a function that has three
parameters, grades between 0 and 100 inclusive, and returns the average
of those grades.

7. Following the function design recipe, define a function that has four pa-
rameters, all of them grades between 0 and 100 inclusive, and returns the
average of the best 3 of those grades. Hint: Call the function that you
defined in the previous exercise.

8. Complete the examples in the docstring and then write the body of the
following function:

def weeks_elapsed(day1, day2):
""" (int, int) -> int
day1 and day2 are days in the same year. Return the number of full weeks
that have elapsed between the two days.
>>> weeks_elapsed(3, 20)
2
>>> weeks_elapsed(20, 3)
2
>>> weeks_elapsed(8, 5)
>>> weeks_elapsed(40, 61)
"""

9. Consider this code:

def square(num):
""" (number) -> number
Return the square of num.
>>> square(3)
9
"""

In the table below, fill in the Example column by writing square, num, square(3),
and 3 next to the appropriate description.

Description Example
Parameter
Argument
Function name
Function call

10. Write the body of the square function from the previous exercise.

18

Assignment 2 Term 2

Due Date: Mo. Dec. 18 2017

Python Strings

Note: Make sure to understand the patterns that show up in exercises 1 and 2.
You’ll need them to solve the rest of the asssignment.

1. What value does each of the following expressions evaluate to? Verify your
answers by typing the expressions into the Python shell.

a. 'Computer' + ' Science'
b. 'Computer' + '\nScience'
c. 'Computer' + '\n'+'Science'
d. 'Computer' + '\\nScience'
e. 'Computer' + '\\n'+"Science"
f. 'Computer' + '\\\n'+"Science"
g. 'Computer' + '\\\nScience'
h. 'Darwin\\'s'
i. 'Darwin\'s'
j. 'H20' * 1
k. 'H20' * 2
l. 'H20' * 3

m. 'C02' * 0

2. For each of the expressions of the previous exercise, pass it as argu-
ment ot he function print() and write down the output. Example:
print('Computer' + ' Science')

Note: Strings that start with a backslash, e.g. \n, are called escape codes.
They have a special meaning when printed out. Thus, \n represents a new
line and the second example, when printed, will print the word Computer
followed by Science in a line below.

Similarly, the escape code \' means a literal, single-quoation mark. Without
the backslash, Python would interpret it a the start/end of a string -that
may not be what you want!

3. Express each of the following phrases as Python strings using the appro-
priate type of quotation marks (single, double, or triple) and, if necessary,
escape sequences. There is more than one correct answer for each of these
phrases.

a. They’ll hibernate during the winter.
b. “Absolutely not,” he said.
c. “He said, ‘Absolutely not,’ ” recalled Mel.
d. hydrogen sulfide

19

e. left\right

4. Rewrite the following string using single or double quotes instead of triple
quotes:

'''A
B
C'''

5. Use built-in function len to find the length of the empty string.

6. Given variables x and y, which refer to values 3 and 12.5, respectively, use
function print to print the following messages. When numbers appear in
the messages, variables x and y should be used.

a. The rabbit is 3.
b. The rabbit is 3 years old.
c. 12.5 is average.
d. 12.5 * 3
e. 12.5 * 3 is 37.5.

7. Consider this code:

>>> first = 'John'
>>> last = 'Doe'
>>> print(last + ', ' + first)

What is printed by the code above?

8. Use input to prompt the user for a number, store the number entered as a
float in a variable named num, and then print the contents of num.

9. Complete the examples in the docstring and then write the body of the
following function:

def repeat(s, n):
""" (str, int) -> str
Return s repeated n times; if n is negative, return the empty string.
>>> repeat('yes', 4)
'yesyesyesyes'
>>> repeat('no', 0)
>>> repeat('no', -2)
>>> repeat('yesnomaybe', 3)
"""

10. Complete the examples in the docstring and then write the body of the
following function:

def total_length(s1, s2):
""" (str, str) -> int
Return the sum of the lengths of s1 and s2.
>>> total_length('yes', 'no')

20

5
>>> total_length('yes', '')
>>> total_length('YES!!!!', 'Noooooo')
"""

Assignment 3 Term 2

Due Date: Fri. Jan. 12 2018

Conditional Expressions

1. What value does each expression produce? Verify your answers by typing
the expressions into Python.

a. True and not False
b. True and not false (Notice the capitalization.)
c. True or True and False
d. not True or not False
e. True and not 0
f. 52 < 52.3
g. 1+52<52.3
h. 4!=4.0

2. Variables x and y refer to Boolean values. (Note: iff stands for
if-and-only-if)

a. Write an expression that produces True iff both variables are True.
b. Write an expression that produces True iff x is False.
c. Write an expression that produces True iff at least one of the variables

is True.

3. Variables full and empty refer to Boolean values. Write an expression that
produces True iff at most one of the variables is True.

4. You want an automatic wildlife camera to switch on if the light level is
less than 0.01 lux (a unit of light intensity) or if the temperature is above
freezing, but not if both conditions are true. (You should assume that
function turn_camera_on has already been defined.) Your first attempt
to write this is as follows:

if (light < 0.01) or (temperature > 0.0):
if not ((light < 0.01) and (temperature > 0.0)):

turn_camera_on()

A friend says that this is an exclusive or and that you could write it more
simply as follows:

21

if (light < 0.01) != (temperature > 0.0): turn_camera_on()

Is your friend right? If so, explain why. If not, give values for light and
temperature that will produce different results for the two fragments of
code.

5. In the section on functions that Python Provides, we saw the built-in
function abs, used as abs(x) where variable x refers to a number. Write
an expression that evaluates to True if x and its absolute value are equal
and evaluates to False otherwise. Assign the resulting value to a variable
named result.

6. Write a function named different that has two parameters, a and b. The
function should return True if a and b refer to different values and should
return False otherwise.

7. Variables population and land_area refer to floats.

a. Write an if statement that will print the population if it is less than
10,000,000.

b. Write an if statement that will print the population if it is between
10,000,000 and 35,000,000.

c. Write an if statement that will print “Densely populated” if the land
density (number of people per unit of area) is greater than 100.

d. Write an if statement that will print “Densely populated” if the land
density (number of people per unit of area) is greater than 100, and
“Sparsely populated” otherwise.

8. Consider the following code:

def convert_to_celsius(T):
"""
This function converts a temperature value T in Farenheit into Celsius.
Example: if T=32F it will return 0.
"""
return (T-32)*10./18.

Function convert_to_celsius, converts from Fahrenheit to Celsius.
Wikipedia, however, discusses several other temperature scales among
them the Kelvin. Visit https://en.wikipedia.org/wiki/Kelvin to read
about them.

a. Write a convert_temperatures(T, source, target) function to
convert temperature T from source units to target units, where source
and target are each one of “Kelvin”, “Celsius” and “Fahrenheit” units.

Hint: On this Wikipedia page there are eight tables, each with
two columns and seven rows. That translates to an awful lot of
if statements—at least 3 * 2—because each of the 3 units can be
converted to the two other units. Possibly even worse, if you decided
to add another temperature scale, you would need to add at least six

22

https://en.wikipedia.org/wiki/Kelvin
http://en.wikipedia.org/wiki/Comparison_of_temperature_scales

more if statements: three to convert from your new scale to each of
the current ones and three to convert from the current ones to your
new scale.

A better way is to choose one canonical scale, such as Celsius. Your
conversion function could work in two steps: convert from the source
scale to Celsius and then from Celsius to the target scale.

b. Now if you added a new temperature scale, say the Newton, how
many if statements would you need to add?

9. In chemistry, we measure how much acidic (or its opposite, basic) a liquid
is in units called pH. Our body is neutral having an acidity of 7. Anything
below this is acidic and thus called an acid; above it, the substance feels
basic and is thus called a base. See the picture.

Figure 1: pH values of common substances1

23

Assume we want to print a strong warning message if a pH value is below
3.0 and otherwise simply report on the acidity. We try this if statement:

>>> ph = 2
>>> if ph < 7.0:
... print(ph, "is acidic.")
... elif ph < 3.0:
... print(ph, "is VERY acidic! Be careful.")
...
2 is acidic.

This prints the wrong message when a pH of 2 is entered. What is the
problem, and how can you fix it?

10. The following code displays a message(s) about the acidity of a solution:

ph = float(input("Enter the ph level: "))
if ph < 7.0:

print("It's acidic!")
elif ph < 4.0:

print("It's a strong acid!")

a. What message(s) are displayed when the user enters 6.4?
b. What message(s) are displayed when the user enters 3.6?
c. Make a small change to one line of the code so that both messages

are displayed when a value less than 4 is entered.

1By OpenStax College - Anatomy & Physiology, Connexions Web
site. http://cnx.org/content/col11496/1.6/, Jun 19, 2013., CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=30131151)]()

24

	Introduction to Python
	Programming in Python using our Raspberry Pi
	The Python Interpreter
	The Python prompt
	Additions, Multiplications and Powers
	Divisions
	Modulo (remainder)

	Assignments
	Numbers
	Strings

	For Loops
	The range command
	Printing the first ten integers
	Summing the first 10 integers
	Summing the first ten powers of 2

	Writing and Running Programs
	Conditional Expressions
	Functions
	What is a function?
	Examples of functions
	Function in Mathematics
	Functions in Python
	Input and output
	Building our own functions in Python
	A first simple function
	A function's code

	Solved problems
	Assignment 1 Term 2
	Basics: Assignments
	Functions

	Assignment 2 Term 2
	Python Strings

	Assignment 3 Term 2
	Conditional Expressions

