
CHAPTER 8

Computer Vision

8.0 Introduction
Computer vision (CV) allows your Raspberry Pi to see things. In practical terms, this
means that your Raspberry Pi can analyze an image, looking for items of interest and
even recognizing faces and text.

If you link this with a camera to supply the images, all sorts of possibilities open up.

8.1 Installing SimpleCV
Problem
You want to install SimpleCV computer vision software on your Raspberry Pi.

Solution
To install SimpleCV, first install the prerequisite packages using these commands:

$ sudo apt-get update
$ sudo apt-get install ipython python-opencv python-scipy
$ sudo apt-get install python-numpy python-setuptools python-pip
$ sudo pip install svgwrite

Then install SimpleCV itself using the command:
$ sudo pip install https://github.com/sightmachine/SimpleCV/zipball/master

Once installation is complete, you can check that everything worked by running this
command:

179

$ simplecv
+---+
 SimpleCV 1.3.0 [interactive shell] - http://simplecv.org
+---+
Commands:
 "exit()" or press "Ctrl+ D" to exit the shell
 "clear()" to clear the shell screen
 "tutorial()" to begin the SimpleCV interactive tutorial
 "example()" gives a list of examples you can run
 "forums()" will launch a web browser for the help forums
 "walkthrough()" will launch a web browser with a walkthrough

This will open the SimpleCV console. This is a Python console, with extra features for
SimpleCV.

Discussion
SimpleCV is a Python wrapper around the OpenCV computer vision software. Sim‐
pleCV, as the name suggests, simplifies the use of OpenCV. If you want to unleash the
full power of OpenCV, take a look at http://opencv.org/.
Computer vision is both processor- and memory-intensive, so although SimpleCV
and OpenCV will work on an older Raspberry Pi, it can be frustratingly slow on any‐
thing earlier than a Raspberry Pi 3 or 2.

See Also
For information on OpenCV, see http://opencv.org/.
The home page for the SimpleCV project is http://simplecv.org.

The first recipe in this chapter to use SimpleCV is Recipe 8.4 and you will find useful
details for getting started with SimpleCV there.

8.2 Setting Up a USB Camera for Computer Vision
Problem
You want to set up a USB webcam for use in computer vision projects.

Solution
Use a USB webcam that is compatible with the Raspberry Pi (see http://elinux.org/
RPi_USB_Webcams). Choose a good quality camera, and if you are working on a
project where you need the camera close to the subject, select one that has a manual
focus option. For getting really close to the subject, a low-cost USB endoscope can be
useful.

180 | Chapter 8: Computer Vision

http://opencv.org/
http://opencv.org/
http://simplecv.org
http://elinux.org/RPi_USB_Webcams
http://elinux.org/RPi_USB_Webcams

Depending on your CV project, you may wish to set up a well-lighted area for your
CV project. Figure 8-1 shows a simple light box made from a translucent plastic stor‐
age box illuminated from the sides and top to give even lighting. The webcam is
attached to a hole in the top of the box. This arrangement is used in Recipe 8.4.

Figure 8-1. Using a homemade “light tent” for even illumination

You can also buy commercial light tents designed for photography that work well.

You may need a little trial and error to get your system brightly and evenly illumina‐
ted. Shadows can be particularly problematic.

Discussion
You can test out your USB camera from the SimpleCV console. Start SimpleCV and
then enter the commands shown below in bold:

SimpleCV:1> c = Camera()
VIDIOC_QUERYMENU: Invalid argument
VIDIOC_QUERYMENU: Invalid argument
VIDIOC_QUERYMENU: Invalid argument
VIDIOC_QUERYMENU: Invalid argument
VIDIOC_QUERYMENU: Invalid argument
VIDIOC_QUERYMENU: Invalid argument
VIDIOC_QUERYMENU: Invalid argument

SimpleCV:2> i = c.getImage()

8.2 Setting Up a USB Camera for Computer Vision | 181

SimpleCV:3> i
SimpleCV:3: <SimpleCV.Image Object size:(640, 480), filename: (None),
at memory location: (0x2381af8)>
SimpleCV:4> i.show()

Don’t worry about the Invalid argument messages.

When you issue the command i.show(), a second window opens showing the image
just captured from the camera.

Although you can use the Raspberry Pi Camera module (Recipe 8.3) with SimpleCV,
it has a very short lead to the Raspberry Pi and you will probably find that you prefer
working with a high-quality webcam.

See Also
To use a Raspberry Pi Camera Module with SimpleCV, see Recipe 8.3.

8.3 Using a Raspberry Pi Camera Module for Computer
Vision
Problem
You want to use a Raspberry Pi Camera Module that connects directly to your Rasp‐
berry Pi with Simple CV.

Solution
The Raspberry Pi Camera Module does not automatically show up as a camera
device. The easiest way to make the module work with SimpleCV is to use the
picamera Python module to capture an image with the camera.

The following code fragment will use picamera to capture an image, save it to a tem‐
porary file, and then load it as an Image suitable for use with SimpleCV.

import picamera
from SimpleCV import *

def get_camera_image():
 with picamera.PiCamera() as camera:
 camera.capture('tmp.jpg')
 return Image('tmp.jpg')

In Recipe 8.4, the program assumes a USB webcam. A second version of the program
using the function above for the Raspberry Pi camera module is also provided in the
file coin_count_pi_cam.py.

182 | Chapter 8: Computer Vision

Discussion
It may seem inefficient to write a file each time an image is captured, and indeed it is,
but any processing that you apply to the image with SimpleCV on a Raspberry Pi is
likely to take a lot longer than the time taken to load and save the image.

The picamera module allows you to set various features of the camera. Most usefully,
you can control the resolution, automatic exposure, and white-balance adjustments,
which can make it easier to get consistent results with CV.

The native resolution of the camera is 2592×1944, which will make for pretty slow
image processing, so you may want to set the resolution to something closer to
1024×768 and turn off auto-white balance. The get_camera_image function can be
modified to include these settings, as shown here:

import picamera
from SimpleCV import *

def get_camera_image():
 with picamera.PiCamera() as camera:
 camera.resolution = (1024, 768)
 camera.awb_mode = 'off'
 camera.capture('tmp.jpg')
 return Image('tmp.jpg')

See Also
See Recipe 1.14 for information on installing the Raspberry Pi camera module.

For information on the picamera Python module, see http://picamera.readthe‐
docs.org/.
To use a USB camera with SimpleCV, see Recipe 8.2.

8.4 Counting Coins
Problem
You want to use computer vision to count the number of coins under your webcam.

Solution
Use SimpleCV and its findCircle function to provide a real-time count of the num‐
ber of coins placed under the webcam.

This is one use of CV where you really need good lighting and a camera fixed in posi‐
tion. I used the setup shown in Figure 8-1.

8.4 Counting Coins | 183

http://picamera.readthedocs.org/
http://picamera.readthedocs.org/

Before writing a Python program that will simply tell you the number of coins your
Raspberry Pi can see, you need to experiment with the SimpleCV console to get the
parameters for circle recognition right.

Start SimpleCV by using the command simplecv and then enter the commands
below to start the camera, capture an image, and then display it in a separate window.

SimpleCV:1> c = Camera()
SimpleCV:2> i = c.getImage()
SimpleCV:3> i.show()

This should open up an image of your coins that looks something like Figure 8-2.

Figure 8-2. A basic image of some coins

Circle detection needs the image to be inverted, or you can use a black background.
To invert the image and then display it, run the commands below:

SimpleCV:4> i2 = i.invert()
SimpleCV:5> i2.show()

This command makes an inverted copy of i that looks like Figure 8-3.

184 | Chapter 8: Computer Vision

Figure 8-3. An inverted image of some coins

Your image is now prepared, so the next step is to have SimpleCV search for circles
using the findCircle command. This command takes three parameters that you will
need to tune to prevent misidentification. The parameters are:

canny
This is the threshold for edge detection. In CV terms, an edge is the line between
significant changes in the image pixel colors. The default for this parameter is
100, and if you decrease this value, you will find more edges. This might not
result in more circles being found because those extra edges might corrupt the
good circle shapes. In the case of a coin, the edges could be writing or graphics
on the coin.

thresh
Having found edges, the circle detection then needs to decide which are strong
enough to represent the circles. Decreasing this value will result in more circles
being found.

distance
This parameter sets the required gap (in pixels) between adjacent circles.

Run the following command to find some circles:

8.4 Counting Coins | 185

SimpleCV:6> coins = i2.findCircle(canny=100, thresh=70, distance=15)
SimpleCV:7> coins
 SimpleCV.Features.Detection.Circle at (237,297),
 SimpleCV.Features.Detection.Circle at (307,323),
 SimpleCV.Features.Detection.Circle at (373,305),
 SimpleCV.Features.Detection.Circle at (305,261),
 SimpleCV.Features.Detection.Circle at (385,253),
 SimpleCV.Features.Detection.Circle at (243,231),
 SimpleCV.Features.Detection.Circle at (307,383),
 SimpleCV.Features.Detection.Circle at (407,371),
 SimpleCV.Features.Detection.Circle at (235,373)]

If you don’t get any coins back, try decreasing the canny and thresh parameters. If
you get too many, then increase thresh. We can check that SimpleCV is actually find‐
ing coins by superimposing the coin circles onto the original image using the follow‐
ing command.

SimpleCV:8> coins.draw(width=4)
SimpleCV:9> coins.show()

This will show the circles superimposed on the actual coins (Figure 8-4).

Figure 8-4. Coins found!

186 | Chapter 8: Computer Vision

Try moving the coins around and adding and removing coins before capturing
another photo and repeating the steps above to make sure things are reliable. You can
tweak the parameters until you get the results you want.

We can bundle the commands that we used in the SimpleCV console into a Python
program that will (as fast as the Raspberry Pi can) print out the number of coins
detected. The program can be found with the other downloads for the book in the file
coin_count.py.

from SimpleCV import *

c = Camera()

while True:
 i = c.getImage().invert()
 coins = i.findCircle(canny=100, thresh=70, distance=1)
 print(len(coins))

After importing the SimpleCV library, the commands are the same as the ones you
typed into the console. The only difference is that rather than displaying the coins,
the len function is used to display the count.

$ sudo python count_coins.py
9
9
9
10
10

Try adding a coin and moving the coins around to see how well the project works.

Discussion
After the initial delay while the library loads and the camera is set up, I found I could
get about two “countings” per second using a Raspberry Pi B+. Using a Raspberry Pi
2, this increased to about five readings per second.

Although not something that you would want to put into a vending machine, it
would be an interesting project to use the diameter of the coins to identify their mon‐
etary value and add up the value of the coins on the table.

You can access the diameter by using the diameter method on one of the coins like
this:

SimpleCV:10> coins[0].diameter()
SimpleCV:11> 60

See Also
For information on installing SimpleCV, see Recipe 8.1.

8.4 Counting Coins | 187

http://www.raspberrypicookbook.com

For information on setting up a camera, see Recipe 8.2.

8.5 Face Detection
Problem
You want to find the coordinates of faces in a photograph or webcam image.

Solution
Use the Haar-like feature detection in SimpleCV to analyze an image and pick out the
faces.

If you have not already done so, install SimpleCV (see Recipe 8.1). Open the Sim‐
pleCV console and load an image containing faces. You will find a suitable file with
the downloads for the book called faces.jpg. Then run the following commands:

SimpleCV:1> i=Image("faces.jpg")
SimpleCV:2> faces = i.findHaarFeatures('face.xml', min_neighbors=5)
SimpleCV:3> faces.draw(width=4)
SimpleCV:4> i.show()

This opens the image viewing window with the faces marked with rectangles, as
shown in Figure 8-5.

Discussion
As well as interfacing with a camera, you can also load existing files into SimpleCV. In
the previous example, the image i is loaded from the file faces.jpg. The method find
HaarFeatures has one mandatory file, which is the type of feature that is being
searched for. These features are called haar features and are described by an XML file.
SimpleCV comes preloaded with some of these files, but you can also find more spe‐
cific haar files on the Internet.

The second parameter used in this example (min_neighbors) will tune the haar func‐
tion. Decreasing min_neighbors increases the number of false positives. When you
see the false positives, they often have a face-ish element to them (mouth, nose, and
eyes).

There are many built-in haar features. You can list them all by using the command:
SimpleCV:5> i.listHaarFeature()
SimpleCV:4> fullbody.xml', 'face4.xml', 'face.xml',
'upper_body.xml', 'right_ear.xml', 'eye.xml', 'lower_body.xml',
'two_eyes_small.xml', 'nose.xml', 'face2.xml', 'lefteye.xml',
'right_eye.xml', 'two_eyes_big.xml', 'face3.xml', 'mouth.xml',
'glasses.xml', 'profile.xml', 'left_ear.xml', 'left_eye2.xml',
'upper_body2.xml', 'right_eye2.xml', 'face_cv2.xml'

188 | Chapter 8: Computer Vision

http://www.raspberrypicookbook.com
http://www.raspberrypicookbook.com

As you can see, they are all associated with parts of the body.

Finding haar features takes a few seconds, even on a Raspberry Pi 3.

Figure 8-5. Detecting faces

See Also
For information on installing SimpleCV, see Recipe 8.1.

For information on setting up a camera, see Recipe 8.2.

For a whole load of interesting Haar files, take a look at https://github.com/Itseez/
opencv/tree/master/data/haarcascades.

8.6 Motion Detection
Problem
You want to use a camera connected to your Raspberry Pi to detect something mov‐
ing in its field of view.

8.6 Motion Detection | 189

https://github.com/Itseez/opencv/tree/master/data/haarcascades
https://github.com/Itseez/opencv/tree/master/data/haarcascades

Solution
Use SimpleCV to detect changes between successive frames from the camera.

The program below compares each captured image with the previous image. It then
detects any blobs (areas of similar color) in the difference image and if there are any
larger than MIN_BLOB_SIZE, it prints out a message saying that movement was detec‐
ted.

from SimpleCV import *

MIN_BLOB_SIZE = 1000

c = Camera()

old_image = c.getImage()

while True:
 new_image = c.getImage()
 diff = new_image - old_image
 blobs = diff.findBlobs(minsize=MIN_BLOB_SIZE)
 if blobs :
 print("Movement detected")
 old_image = new_image

Discussion
Successive frames of the image might look like Figures 8-6 and 8-7. When the first
image is subtracted from the first, the resulting image will look like Figure 8-8. Run‐
ning blob detection on it will result in the outlined blobs shown in Figure 8-9.

190 | Chapter 8: Computer Vision

Figure 8-6. Movement detection frame 1

Figure 8-7. Movement detection frame 2

8.6 Motion Detection | 191

Figure 8-8. Movement detection, the difference image

Figure 8-9. Movement detection blobs

192 | Chapter 8: Computer Vision

Using a Raspberry Pi 2, the motion detection program above will process about five
frames per second.

See Also
For information on installing SimpleCV, see Recipe 8.1 . For information on setting
up a camera, see Recipe 8.2.

An alternative way to detect movement is to use a Passive Infrared (PIR) sensor; see
Recipe 12.9.

8.7 Optical Character Recognition
Problem
You want to be able to convert an image containing text to actual text.

Solution
Use the tesseract Optical Character Recognition (OCR) software to extract text
from the image.

To install tesseract, run the following commands:
$ sudo apt-get install python-distutils-extra tesseract-ocr tesseract-ocr-eng
libopencv-dev libtesseract-dev libleptonica-dev python-all-dev swig
libcv-dev python-opencv python-numpy python-setuptools
build-essential subversion
$ sudo apt-get install tesseract-ocr-eng tesseract-ocr-dev libleptonica-dev
python-all-dev swig libcv-dev
$ sudo svn checkout
http://python-tesseract.googlecode.com/svn/python-tesseract-0.7.4/
$ cd python-tesseract-0.7.4
$ sudo python setup.py build
$ sudo python setup.py install

To try out tesseract, you will need an image file that contains some text. You will
find one called ocr_example.png with the downloads for the book.

To convert the image to text, run the command:
$ tesseract ocr_example.png found
Tesseract Open Source OCR Engine v3.02 with Leptonica
$ more found.txt
The quick brown fox jumped over
the lazy dogs back.
$

8.7 Optical Character Recognition | 193

http://www.raspberrypicookbook.com

Discussion
The tesseract library will work with most image types, including PDF, PNG, and
JPG files.

See Also
For more information on the tesseract library, see https://github.com/tesseract-ocr/
tesseract/wiki/TrainingTesseract.

194 | Chapter 8: Computer Vision

https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract
https://github.com/tesseract-ocr/tesseract/wiki/TrainingTesseract

