
CHAPTER 10

Controlling Hardware

10.0 Introduction
In this chapter, you come to grips with the control of electronics through the Rasp‐
berry Pi’s GPIO connector.

Most of the recipes require the use of solderless breadboard and male-to-female and
male-to-male jumper wires (see Recipe 9.8). To maintain compatibility with older 26-
pin Raspberry Pi models, all the breadboard examples here only use the top 26 pins
common to both GPIO layouts (see Recipe 9.1).

10.1 Connecting an LED
Be sure to check out the accompanying video for this recipe at
http://razzpisampler.oreilly.com.

Problem
You want to know how to connect an LED to the Raspberry Pi.

Solution
Connect an LED to one of the GPIO pins using a 470Ω or 1kΩ series resistor to limit
the current. To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 470Ω resistor (see “Resistors and Capacitors” on page 474)

239

http://razzpisampler.oreilly.com

• LED (see “Opto-Electronics” on page 476)

Figure 10-1 shows how you can wire this LED using a solderless breadboard and
male-to-female jumper leads.

Figure 10-1. Connecting an LED to a Raspberry Pi

Having connected the LED, we need to be able to turn it on and off using commands
from Python.

Start a Python console from the Terminal with superuser access and enter these com‐
mands:

$ sudo python
>>> import RPi.GPIO as GPIO
>>> GPIO.setmode(GPIO.BCM)
>>> GPIO.setup(18, GPIO.OUT)
>>> GPIO.output(18, True)
>>> GPIO.output(18, False)

This will turn your LED on and off.

Discussion
LEDs are a very useful, cheap, and efficient way of producing light, but you do have to
be careful how you use them. If they are connected directly to a voltage source (such
as a GPIO output) that is greater than about 1.7 volts, they will draw a very large cur‐
rent. This can often be enough to destroy the LED or whatever is providing the cur‐
rent—which is not good if your Raspberry Pi is providing the current.

You should always use a series resistor with an LED because the series resistor is
placed between the LED and the voltage source, which limits the amount of current
flowing through the LED to a level that is safe for both the LED and the GPIO pin
driving it.

240 | Chapter 10: Controlling Hardware

Raspberry Pi GPIO pins are only guaranteed to provide about 3mA or 16mA of cur‐
rent (depending on the board and number of pins in use)—see Recipe 9.2. LEDs will
generally illuminate with any current greater than 1mA, but will be brighter with
more current. Use Table 10-1 as a guide to selecting a series resistor based on the type
of LED; the table also indicates the approximate current that will be drawn from the
GPIO pin.

Table 10-1. Selecting series resistors for LEDs and a 3.3V GPIO pin
LED type Resistor Current (mA)
Red 470Ω 3.5

Red 1kΩ 1.5

Orange, yellow, green 470Ω 2

Orange, yellow, green 1kΩ 1

Blue, white 100Ω 3

Blue, white 270Ω 1

As you can see, in all cases, it is safe to use a 470Ω resistor. If you are using a blue or
white LED, you can reduce the value of the series resistor considerably without risk of
damaging your Raspberry Pi.

If you want to extend the experiments that you made in the Python console into a
program that makes the LED blink on and off repeatedly, you could paste the follow‐
ing code into the IDLE (Recipe 5.2) or nano (Recipe 3.6) editors. Save the file as
led_blink.py. You can also download the program from the Downloads section on the
Raspberry Pi Cookbook website.

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)

while (True):
 GPIO.output(18, True)
 time.sleep(0.5)
 GPIO.output(18, False)
 time.sleep(0.5)

Remember that to run the program, you must have superuser privileges for the
RPi.GPIO library, so you need to use this command:

$ sudo python led_blink.py

See Also
Check out this handy series resistor calculator.

10.1 Connecting an LED | 241

http://www.raspberrypicookbook.com
http://led.linear1.org/1led.wiz

For more information on using breadboard and jumper wires with the Raspberry Pi,
see Recipe 9.8.

10.2 Leaving the GPIO Pins in a Safe State
Problem
You want all the GPIO pins to be set to inputs whenever your program exits so that
there is less of a chance of an accidental short on the GPIO header, which could dam‐
age your Raspberry Pi.

Solution
Use a try: finally: construction and the GPIO.cleanup method.

The blink example from Recipe 10.1 can be rewritten to exit safely as shown below.
The file for the code is called led_blink_safe.py.

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)

try:
 while (True):
 GPIO.output(18, True)
 time.sleep(0.5)
 GPIO.output(18, False)
 time.sleep(0.5)
finally:
 print("Cleaning Up!")
 GPIO.cleanup()

Now, when you Ctrl-C the program to close it, GPIO.cleanup will be called before the
program exits.

Discussion
If cleanup is not called or the Pi is not rebooted, then pins set to be outputs will
remain as outputs after the program has finished. If you were to start wiring up a new
project, unaware of this problem, your new circuit might accidentally short a GPIO
output to one of the supply rails or another GPIO pin in the opposite state.

A typical scenario where this might happen would be if you were to connect a push
switch, connecting a GPIO pin that you had configured as an output and HIGH to
GND, such as in Recipe 12.1.

242 | Chapter 10: Controlling Hardware

In summary, either be careful when swapping hardware or use GPIO.cleanup as
shown earlier, or reboot your Pi. In any case, its a good idea to power down your Pi
while you are connecting new hardware to it.

See Also
For more information on exception handling in Python, see Recipe 7.10.

10.3 Controlling the Brightness of an LED
Problem
You want to vary the brightness of an LED from a Python program.

Solution
The RPi.GPIO library has a pulse-width modulation (PWM) feature that allows you
to control the power to an LED and its brightness.

To try it out, connect an LED as described in Recipe 10.2 and run this test program
(led_brightness.py):

import RPi.GPIO as GPIO

led_pin = 18
GPIO.setmode(GPIO.BCM)
GPIO.setup(led_pin, GPIO.OUT)

pwm_led = GPIO.PWM(led_pin, 500)
pwm_led.start(100)

while True:
 duty_s = raw_input("Enter Brightness (0 to 100):")
 duty = int(duty_s)
 pwm_led.ChangeDutyCycle(duty)

If you are using Python 3 rather than Python 2, change the command raw_input to
input.

Run the Python program, and you will be able to change the brightness by entering a
number between 0 and 100:

pi@raspberrypi ~ $ sudo python led_brightness.py
Enter Brightness (0 to 100):0
Enter Brightness (0 to 100):20
Enter Brightness (0 to 100):10
Enter Brightness (0 to 100):5
Enter Brightness (0 to 100):1
Enter Brightness (0 to 100):90

10.3 Controlling the Brightness of an LED | 243

Exit the program by pressing Ctrl-C.

Discussion
PWM is a clever technique where you vary the length of pulses while keeping the
overall number of pulses per second (the frequency in Hz) constant. Figure 10-2 illus‐
trates the basic principle of PWM.

Figure 10-2. Pulse-width modulation

At high frequencies, the measured PWM frequency varies somewhat from the fre‐
quency supplied as an argument. This might change in later versions of the PWM
feature of RPi.GPIO.

You can change the PWM frequency by modifying this line:

pwm_led = GPIO.PWM(led_pin, 500)

The value is in Hz, so in this case, the frequency is set to 500 Hz.

Table 10-2 compares frequencies specified in the second parameter to GPIO.PWM to
the actual frequency on the pin measured with an oscilloscope.

244 | Chapter 10: Controlling Hardware

Table 10-2. Requested frequency against actual frequency
Requested frequency Measured frequency
50 Hz 50 Hz

100 Hz 98.7 Hz

200 Hz 195 Hz

500 Hz 470 Hz

1 kHz 890 Hz

10 kHz 4.4 kHz

I also found that as the frequency increased, its stability decreased. This means that
this PWM feature is no good for audio but plenty fast enough for controlling the
brightness of LEDs or the speed of motors.

See Also
For more information on PWM, see Wikipedia.

Recipe 10.10 uses PWM to change the color of an RGB LED, and Recipe 11.4 uses
PWM to control the speed of a DC motor.

For more information on using breadboard and jumper wires with the Raspberry Pi,
see Recipe 9.8. You can also control the brightness of the LED with a slider control—
see Recipe 10.9.

For another approach to controlling the color of an RGB LED using the Squid RGB
LED library, see Recipe 9.10.

10.4 Make a Buzzing Sound
Problem
You want to make a buzzing sound with the Raspberry Pi.

Solution
Use a piezo-electric buzzer connected to a GPIO pin.

Most small piezo buzzers work just fine using the arrangement shown in Figure 10-3.
The one I used is an Adafruit-supplied component (see “Miscellaneous” on page 477).
You can connect the buzzer pins directly to the Raspberry Pi using female-to-female
headers (see “Prototyping Equipment” on page 474).

These buzzers use very little current. However, if you have a large buzzer or just want
to play it safe, then put a 470Ω resistor between the GPIO pin and the buzzer lead.

10.4 Make a Buzzing Sound | 245

http://bit.ly/1iobPt8

Figure 10-3. Connecting a piezo buzzer to a Raspberry Pi

Paste the following code into the IDLE (Recipe 5.2) or nano (Recipe 3.6) editors.
Save the file as buzzer.py. You can also download the program from the Downloads
section of the Raspberry Pi Cookbook website.

import RPi.GPIO as GPIO
import time

buzzer_pin = 18
GPIO.setmode(GPIO.BCM)
GPIO.setup(buzzer_pin, GPIO.OUT)

def buzz(pitch, duration):
 period = 1.0 / pitch
 delay = period / 2
 cycles = int(duration * pitch)
 for i in range(cycles):
 GPIO.output(buzzer_pin, True)
 time.sleep(delay)
 GPIO.output(buzzer_pin, False)
 time.sleep(delay)

while True:

246 | Chapter 10: Controlling Hardware

http://www.raspberrypicookbook.com

 pitch_s = raw_input("Enter Pitch (200 to 2000): ")
 pitch = float(pitch_s)
 duration_s = raw_input("Enter Duration (seconds): ")
 duration = float(duration_s)
 buzz(pitch, duration)

When you run the program, it will first prompt you for the pitch in Hz and then the
duration of the buzz in seconds:

$ sudo python buzzer.py
Enter Pitch (2000 to 10000): 2000
Enter Duration (seconds): 20

Discussion
Piezo buzzers don’t have a wide range of frequencies, nor is the sound quality
remotely good. However, you can vary the pitch a little. The frequency generated by
the code is very approximate.

The program works by simply toggling the GPIO pin 18 on and off with a short delay
in between. The delay is calculated from the pitch. The higher the pitch (frequency),
the shorter the delay needs to be.

See Also
You can find the datasheet for the piezo buzzer here: http://bit.ly/Iwkv2R.

10.5 Switching a High-Power DC Device Using a Transistor
Problem
You want to control the power to a high-power, low-voltage DC device such as a 12V
LED module.

Solution
These high-power LEDs use far too much current to light directly from a GPIO pin.
They also require 12V rather than the 3.3V. To control such a high-power load, you
need to use a transistor.

In this case, you will use a high-power type of transistor called a metal–oxide–semi‐
conductor field-effect transistor (MOSFET), which costs less than a dollar but can
handle loads up to 30 amps—many times more than is required for the high-power
LEDs. The MOSFET used is a FQP30N06L (see “Transistors and Diodes” on page
475).

Figure 10-4 shows how you can connect a MOSFET on a breadboard. Make sure that
you correctly identify the positive and negative supply leads for the LED module.

10.5 Switching a High-Power DC Device Using a Transistor | 247

http://bit.ly/Iwkv2R

Figure 10-4. Controlling large currents with a MOSFET

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 1kΩ resistor (see “Resistors and Capacitors” on page 474)
• FQP30N06L N-Channel MOSFET or TIP120 Darlington transistor (see “Transis‐

tors and Diodes” on page 475)
• 12V power adapter
• 12V DC LED module

The Python code to turn the LED panel on and off is exactly the same as if we were
controlling a single low-power LED without the MOSFET (see Recipe 10.1).

You can also use PWM with the MOSFET to control the brightness of the LED mod‐
ule (see Recipe 10.3).

Discussion
Whenever you need to power anything significant using the GPIO connector, use
batteries or an external power adapter. The GPIO connector can only supply rela‐
tively low currents (Recipe 9.2). In this case, you’ll use a 12V DC power adapter to
provide the power to the LED panel. Pick a power adapter that has sufficient power
handling. Therefore, if the LED module is 5W, then you need at least a 12V 5W
power supply (6W would be better). If the power supply specifies a maximum current
rather than power, then you can calculate its power by multiplying the voltage by the
maximum current. Therefore, a 500mA 12V power supply can provide 6W of power.

248 | Chapter 10: Controlling Hardware

The resistor is necessary to ensure that the peak currents that occur as the MOSFET
switches from off to on and vice versa do not overload the GPIO pin. The MOSFET
switches the negative side of the LED panel, so the positive supply is connected
directly to the positive side of the LED panel, and the negative side of the LED panel
is connected to the drain of the MOSFET. The source connection of the MOSFET is
connected to GND, and the MOSFET’s gate pin controls the flow of current from the
drain to the source. If gate voltage is above 2V or so, the MOSFET will turn on and
current flows through both it and the LED module.

The MOSFET used here is a FQP30N06L. The L at then end means that it is a logic-
level MOSFET whose gate threshold voltage is suitable for use with 3.3V digital out‐
puts. The non-L version of this MOSFET is also likely to work just fine, but you can‐
not guarantee it as the specified range of gate threshold voltages is 2V to 4V. There‐
fore, if you were unlucky and got a MOSFET at the 4V end, it would not switch well.

An alternative to using a MOSFET is to use a power Darlington transistor like the
TIP120. This has a compatible pinout with the FQP30N06L, so you can keep the
same breadboard layout.

This circuit is suitable for controlling the power to other low-voltage DC devices. The
only real exceptions are motors and relays, which require some extra treatment (see
Recipe 10.6).

See Also
Check out the datasheet for the MOSFET.

If you would like to create a graphical user interface with which to control your LED
module, see Recipe 10.8 for simple on/off control, and Recipe 10.9 for variable con‐
trol of the brightness with a slider.

10.6 Switching a High-Power Device Using a Relay
Problem
You want to turn devices on and off that may not be suitable for switching with a
MOSFET.

Solution
Use a relay and small transistor.

Figure 10-5 shows how you can connect a transistor and relay on a breadboard. Make
sure that both the transistor and diode are placed the right way. The diode has a stripe
at one end, and the transistor used here has one side flat and one curved.

10.6 Switching a High-Power Device Using a Relay | 249

http://bit.ly/18J3bxT

Figure 10-5. Using a relay with a Raspberry Pi

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• 1kΩ resistor (see “Resistors and Capacitors” on page 474)
• Transistor 2N3904 (see “Transistors and Diodes” on page 475)
• 1N4001 diode (see “Transistors and Diodes” on page 475)
• 5V relay (see “Miscellaneous” on page 477)
• Multimeter

You can use the same LED blink program that you used in Recipe 10.1. If all is well,
you’ll hear a click from the relay each time the contacts are closed. However, relays
are slow mechanical devices, so don’t try to use them with PWM. It may damage the
relay.

250 | Chapter 10: Controlling Hardware

Discussion
Relays have been around since the early days of electronics and have the great advan‐
tage of being easy to use, plus they’ll work in any situation where a switch would
normally work—for example, when you’re switching AC (alternating current) or in
situations where the exact wiring of the device being switched is unknown.

If the relay contacts are asked to exceed their specifications, then the relay’s life will be
shortened. There will be arcing, and the contacts may eventually fuse together. There
is also the possibility of the relay becoming dangerously hot. When in doubt, over‐
specify the relay contacts.

Figure 10-6 shows the schematic symbol, pin layout, and package of a typical relay.

Figure 10-6. The workings of a relay

A relay is essentially a switch whose contacts are closed when an electromagnet pulls
them together. Since the electromagnet and switch are not connected electrically in
any way, this protects the circuit driving the relay coil from any high voltages on the
switch side.

The downside of relays is that they are slow to operate and will eventually wear out
after many hundreds of thousands of operations. This means they are only suitable
for slow on/off control, and not for fast switching like PWM.

The coil of a relay requires about 50mA to close the connections. Because a Rasp‐
berry Pi GPIO pin is only capable of supplying about 3mA, you need to use a small
transistor as a switch. You don’t need to use a high-power MOSFET like you did in
Recipe 10.5, but instead you can just use a small transistor. This has three connec‐
tions. The base (middle lead) is connected to the GPIO pin via a 1kΩ resistor to limit
the current. The emitter is connected to GND, and the collector is connected to one
side of the relay. The other side of the relay is connected to 5V on the GPIO connec‐
tor. The diode is used to suppress any high-voltage pulses that occur when the tran‐
sistor rapidly switches the power to the relay’s coil.

10.6 Switching a High-Power Device Using a Relay | 251

Although relays can be used to switch 110V or 240V AC, this volt‐
age is very dangerous and should not be used on a breadboard. If
you want to switch high voltages, use Recipe 10.7 instead.

See Also
For switching DC using a power MOSFET, see Recipe 10.5.

10.7 Controlling High-Voltage AC Devices
Problem
You want to switch 110 or 240V AC, using a Raspberry Pi.

Solution
Use a PowerSwitch Tail II (see Figure 10-7). This handy device makes it really easy to
switch AC equipment on and off from a Raspberry Pi. It has an AC socket on one end
and a plug on the other, like an extension cable; the only difference is that the control
box in the middle of the lead has three screw terminals. By attaching terminal 2 to
GND and terminal 1 to a GPIO pin, the device acts like a switch to turn the appliance
on and off.

You can use the same Python code that you did in Recipe 10.1 to use the PowerSwitch
Tail, as shown in Figure 10-7.

Discussion
The PowerSwitch Tail uses a relay, but to switch the relay, it uses a component called
an opto-isolator, which has an LED shining onto a photo-TRIAC (a high-voltage,
light-sensitive switch); when the LED is illuminated, the photo-TRIAC conducts,
supplying current to the relay coil.

The LED inside the opto-isolator has its current limited by a resistor so that only
3mA flows through it when you supply it with 3.3V from a GPIO pin.

You will also find similar but cheaper devices to the PowerSwitch Tail for sale on eBay
and Amazon.

252 | Chapter 10: Controlling Hardware

Figure 10-7. Using a PowerSwitch Tail with Raspberry Pi

See Also
For switching DC using a power MOSFET, see Recipe 10.5; and for switching using a
relay on a breadboard, see Recipe 10.6.

A 240V version of the PowerSwitch Tail is available as a kit.

10.8 Making a User Interface to Turn Things On and Off
Problem
You want to make an application to run on the Raspberry Pi that has a button for
turning things on and off.

Solution
Using the Tkinter user interface framework, write a Python program that uses a
checkbox to turn the GPIO pin on and off (Figure 10-8).

10.8 Making a User Interface to Turn Things On and Off | 253

http://bit.ly/1byrZtl

Figure 10-8. A user interface for turning things on and off

You’ll need to connect an LED or some other kind of output device to GPIO pin 18.
Using an LED (Recipe 10.1) is the easiest option to start with.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of http://www.raspberrypicookbook.com, where it is called gui_switch.py.

from Tkinter import *
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)

class App:

 def __init__(self, master):
 frame = Frame(master)
 frame.pack()
 self.check_var = BooleanVar()
 check = Checkbutton(frame, text='Pin 18',
 command=self.update,
 variable=self.check_var, onvalue=True, offvalue=False)
 check.grid(row=1)

 def update(self):
 GPIO.output(18, self.check_var.get())

root = Tk()
root.wm_title('On / Off Switch')
app = App(root)
root.geometry("200x50+0+0")
root.mainloop()

Note that you will need to run it with sudo because the RPi.GPIO requires you to have
superuser privileges to access the GPIO hardware:

$ sudo python gui_switch.py

In Python 3, the Tkinter library has been renamed tkinter with a
lowercase t.

254 | Chapter 10: Controlling Hardware

http://www.raspberrypicookbook.com

Discussion
The example program defines a class called App that contains most of the application
code. Its initializer function creates a member variable called check_var that contains
an instance of BooleanVar that is then supplied as the variable option to the check‐
box. This ensures that every time the checkbox is clicked, the value in this variable
will be changed. The command option runs the update command every time such a
change occurs.

The update function simply writes the value in check_var to the GPIO output.

See Also
You can use this program to control an LED (Figure 10-8), a high-power DC device
(Recipe 10.5), a relay (Recipe 10.6), or a high-voltage AC device (Recipe 10.7).

10.9 Making a User Interface to Control PWM Power for
LEDs and Motors
Problem
You want to make an application to run on the Raspberry Pi that has a slider to con‐
trol power to a device using PWM.

Solution
Using the Tkinter user interface framework, write a Python program that uses a slider
to change the PWM duty cycle between 0 and 100 percent (Figure 10-9).

Figure 10-9. User interface for controlling PWM power

You will need to connect an LED or some other kind of output device to GPIO pin 18
that is capable of responding to a PWM signal. Using an LED (Recipe 10.1) is the
easiest option to start with.

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of http://www.raspberrypicookbook.com, where it is called gui_slider.py.

10.9 Making a User Interface to Control PWM Power for LEDs and Motors | 255

http://www.raspberrypicookbook.com

from Tkinter import *
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)
pwm = GPIO.PWM(18, 500)
pwm.start(100)

class App:

 def __init__(self, master):
 frame = Frame(master)
 frame.pack()
 scale = Scale(frame, from_=0, to=100,
 orient=HORIZONTAL, command=self.update)
 scale.grid(row=0)

 def update(self, duty):
 pwm.ChangeDutyCycle(float(duty))

root = Tk()
root.wm_title('PWM Power Control')
app = App(root)
root.geometry("200x50+0+0")
root.mainloop()

Note that you will need to run it with sudo because the RPi.GPIO requires you to have
superuser privileges to access the GPIO hardware.

$ sudo python gui_slider.py

Discussion
The example program defines a class called App that contains most of the application
code. The command option runs the update command every time the value of the
slider is changed. This updates the duty cycle of the output pin.

See Also
You can use this program to control an LED (Recipe 10.1), a DC motor (Recipe 11.4),
or a high-power DC device (Recipe 10.5).

10.10 Changing the Color of an RGB LED
Problem
You want to control the color of an RGB LED.

256 | Chapter 10: Controlling Hardware

Solution
Use PWM to control the power to each of the red, green, and blue channels of an
RGB LED.

To make this recipe, you will need:

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• Three 470Ω resistors (see “Resistors and Capacitors” on page 474)
• RGB common cathode LED (“Opto-Electronics” on page 476)
• A Perma-Proto (Recipe 9.9) or Pi Plate (see Recipe 9.19) to make a more perma‐

nent project (optional)

Figure 10-10 shows how you can connect your RGB LED on a breadboard. Make sure
that the LED is the correct way around; the longest lead should be the second lead
from the top of the breadboard. This connection is called the common cathode, as the
negative connections (cathodes) of the red, green, and blue LEDs within the LED case
have all their negative sides connected together to reduce the number of pins needed
in the package.

Figure 10-10. Using a RGB LED with a Raspberry Pi

An alternative to using a breadboard is to use a Raspberry Squid (see Recipe 9.10).

The upcoming program has three sliders to control the red, green, and blue channels
of the LED (Figure 10-11).

10.10 Changing the Color of an RGB LED | 257

Figure 10-11. Using a user interface to control an RGB LED

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of http://www.raspberrypicookbook.com, where it is called gui_sliderRGB.py.

from Tkinter import *
import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)
GPIO.setup(18, GPIO.OUT)
GPIO.setup(23, GPIO.OUT)
GPIO.setup(24, GPIO.OUT)

pwmRed = GPIO.PWM(18, 500)
pwmRed.start(100)

pwmGreen = GPIO.PWM(23, 500)
pwmGreen.start(100)

pwmBlue = GPIO.PWM(24, 500)
pwmBlue.start(100)

class App:

 def __init__(self, master):
 frame = Frame(master)
 frame.pack()
 Label(frame, text='Red').grid(row=0, column=0)
 Label(frame, text='Green').grid(row=1, column=0)
 Label(frame, text='Blue').grid(row=2, column=0)
 scaleRed = Scale(frame, from_=0, to=100,
 orient=HORIZONTAL, command=self.updateRed)
 scaleRed.grid(row=0, column=1)
 scaleGreen = Scale(frame, from_=0, to=100,

258 | Chapter 10: Controlling Hardware

http://www.raspberrypicookbook.com

 orient=HORIZONTAL, command=self.updateGreen)
 scaleGreen.grid(row=1, column=1)
 scaleBlue = Scale(frame, from_=0, to=100,
 orient=HORIZONTAL, command=self.updateBlue)
 scaleBlue.grid(row=2, column=1)

 def updateRed(self, duty):
 pwmRed.ChangeDutyCycle(float(duty))

 def updateGreen(self, duty):
 pwmGreen.ChangeDutyCycle(float(duty))

 def updateBlue(self, duty):
 pwmBlue.ChangeDutyCycle(float(duty))

root = Tk()
root.wm_title('RGB LED Control')
app = App(root)
root.geometry("200x150+0+0")
root.mainloop()

Discussion
The code is similar in operation to the control for a single PWM channel, described
in Recipe 10.9. However, in this case, you need three PWM channels and three slid‐
ers, one for each color.

The type of RGB LED used here is a common cathode. If you have the common
anode type, then you can still use it, but connect the common anode to the 3.3V pin
on the GPIO connector. You will then find that the slider becomes reversed, so a set‐
ting of 100 becomes off and 0 becomes full on.

When you are selecting an LED for this project, LEDs labeled diffused are best
because they allow the colors to be mixed better.

See Also
If you just want to control one PWM channel, see Recipe 10.9.

For another approach to controlling the color of an RGB LED using the Squid RGB
LED library, see Recipe 9.10.

10.10 Changing the Color of an RGB LED | 259

10.11 Using Lots of LEDs (Charlieplexing)
Be sure to check out the accompanying video for this recipe at
http://razzpisampler.oreilly.com.

Problem
You want to control lots of LEDs using as few GPIO pins as possible.

Solution
The way to do this is to use a technique called Charlieplexing. The name comes from
the inventor, Charlie Allen of the company Maxim, and the technique takes advan‐
tage of the feature of GPIO pins that allows them to be changed from outputs to
inputs while a program is running. When a pin is changed to be an input, not enough
current will flow through it to light an LED or influence other pins connected to the
LED that are set as outputs.

Figure 10-12 shows the schematic for controlling six LEDs with three pins.

Figure 10-12. Charlieplexing

Figure 10-13 shows the breadboard layout for the LEDs and resistors.

To make this recipe, you will need:

260 | Chapter 10: Controlling Hardware

http://razzpisampler.oreilly.com

• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• Three 470Ω resistors (see “Resistors and Capacitors” on page 474)
• Six LEDs (see “Opto-Electronics” on page 476)

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can also download the program from the Code sec‐
tion of the Raspberry Pi Cookbook website, where it is called charlieplexing.py.

Figure 10-13. Charlieplexing breadboard layout

This example code prompts you to enter a number between 0 and 5, which then lights
one of the six LEDs:

import RPi.GPIO as GPIO

pins = [18, 23, 24]

pin_led_states = [
 [1, 0, -1], # A
 [0, 1, -1], # B
 [-1, 1, 0], # C
 [-1, 0, 1], # D
 [1, -1, 0], # E
 [0, -1, 1] # F
]

GPIO.setmode(GPIO.BCM)

def set_pin(pin_index, pin_state):
 if pin_state == -1:
 GPIO.setup(pins[pin_index], GPIO.IN)
 else:
 GPIO.setup(pins[pin_index], GPIO.OUT)
 GPIO.output(pins[pin_index], pin_state)

10.11 Using Lots of LEDs (Charlieplexing) | 261

http://www.raspberrypicookbook.com

def light_led(led_number):
 for pin_index, pin_state in enumerate(pin_led_states[led_number]):
 set_pin(pin_index, pin_state)

set_pin(0, -1)
set_pin(1, -1)
set_pin(2, -1)

while True:
 x = int(raw_input("Pin (0 to 5):"))
 light_led(x)

Discussion
To understand how Charlieplexing works, imagine that you want to light LED A in
Figure 10-12. An LED will only light when its positive lead is high and its negative
lead is low. If the voltage is the other way around, it will not light. To light LED A, you
need its lead connected to GPIO 18 (via a resistor) to be high, and the other lead to
LED A, connected to GPIO 23 by a resistor, to be low. However, you must also make
sure that GPIO 24 is set to be an input; otherwise, LED C or D will also light depend‐
ing on whether GPIO 24 is high or low.

The array pin_led_states holds the settings for each GPIO for each of the six LEDs. If
the value is 0, the pin is low; 1 means high and -1 means set to be an input.

The number of LEDs that can be controlled per GPIO pin is given by the formula:

LEDs = n2 - n

Using four pins, you can have 16, 4, or 12 LEDs, whereas 10 pins would give you a
massive 90 LEDs.

In this example, you’re lighting only one LED at a time. To light more than one at a
time, you need to run a refresh loop that keeps the desired state of the LEDs in an
array and refreshes the display, turning on the LEDs that need to be on before moving
on to the next. It must do this fast enough so that it appears that more than one of the
LEDs is on at the same time.

The more LEDs you use when it comes to making it appear that more than one LED
is on at a time, the less time the LED will actually be lit, and the dimmer the LEDs
will become.

See Also
For more information about Charlieplexing, see Wikipedia.

262 | Chapter 10: Controlling Hardware

https://en.wikipedia.org/wiki/Charlieplexing

10.12 Using an Analog Meter as a Display
Problem
You want to connect an analog panel volt meter to a Raspberry Pi.

Solution
Assuming you have a 5V volt meter, you can use a PWM output to drive the meter
directly, connecting the negative side of the meter to ground and the positive side to a
GPIO pin (Figure 10-14). If the meter is the common 5V kind, you’ll only be able to
display voltages up to 3.3V.

Figure 10-14. Connecting a volt meter directly to a GPIO pin

10.12 Using an Analog Meter as a Display | 263

If you want to use almost the full range of a 5V volt meter, you will need a transistor
to act as a switch for the PWM signal and a 1kΩ resistor to limit the current to the
base of the transistor.

To make this recipe, you will need:

• 5V panel meter (“Miscellaneous” on page 477)
• Breadboard and jumper wires (see “Prototyping Equipment” on page 474)
• Two 1kΩ resistors (see “Resistors and Capacitors” on page 474)
• Transistor 2N3904 (see “Transistors and Diodes” on page 475)

The breadboard layout for this is shown in Figure 10-15.

Figure 10-15. Using a 5V panel meter with 3.3V GPIO

Discussion
To test the volt meter, use the same program as you did for controlling the brightness
of the LED in Recipe 10.9.

You will probably notice that the needle gives a steady reading at either end of the
scale, but everywhere else it jitters a bit. This is a side effect of the way the PWM sig‐
nals are generated. For a steadier result, you can use external PWM hardware like the
16-channel module used in Recipe 11.3.

See Also
For more information about how old-fashioned volt meters work, see Wikipedia.

264 | Chapter 10: Controlling Hardware

https://en.wikipedia.org/wiki/Voltmeter

For more information on using a breadboard and jumper wires with the Raspberry
Pi, see Recipe 9.8.

10.13 Programming with Interrupts
Problem
You want to respond to some event, such as a button push, without having to contin‐
ually poll the input pin to see if its state has changed.

Solution
Use the add_event_detect function of the RPi.GPIO library.

The upcoming example shows how you can attach an interrupt service routine to be
triggered when a button is pressed.

Wire the switch onto a breadboard, as shown in Figure 10-16. Alternatively, you
could use a Squid Button (Recipe 9.11).

Figure 10-16. Connecting a switch to a GPIO input to demonstrate interrupts

Open an editor (nano or IDLE) and paste in the following code. As with all the pro‐
gram examples in this book, you can download the program from the Code section of
the Raspberry Pi Cookbook website, where it is called interrupts.py.

This example code continually updates a count in seconds and displays a message
when the button is pressed:

import RPi.GPIO as GPIO
import time

GPIO.setmode(GPIO.BCM)

10.13 Programming with Interrupts | 265

http://www.raspberrypicookbook.com

def my_callback(channel):
 print('You pressed the button')

GPIO.setup(18, GPIO.IN, pull_up_down=GPIO.PUD_UP)
GPIO.add_event_detect(18, GPIO.FALLING, callback=my_callback)

i = 0
while True:
 i = i + 1
 print(i)
 time.sleep(1)

Try running the program with superuser privileges—you should see something like
this happen when you press the button:

$ sudo python interrupts.py
1
2
3
You pressed the button
4
You pressed the button
5
You pressed the button
You pressed the button
6

Discussion
You could detect when a button has been pressed or a GPIO input has changed by
simply checking repeatedly in a loop; for example:

while True:
 if GPIO.input(18) == False:
 # put the code to be actioned here
 time.sleep(0.1)

The disadvantage here is that you can’t do much else while you are checking for but‐
ton presses. A second disadvantage is that if the button press is very quick, it could
come and go before you can register it with the GPIO.input. This approach is called
polling.

Interrupts work differently. They allow you to associate a function with one of the
pins so that when the voltage at the input changes either from low to high or vice
versa, you can trigger the function to be run.

You can see how this works in the preceding example program. First, define a func‐
tion called my_callback that takes a single argument. This argument specifies the
input that triggered the interrupt, allowing you to use the same handler function for a
number of interrupts.

266 | Chapter 10: Controlling Hardware

def my_callback(channel):
 print('You pressed the button')

In this case, the callback function just displays a message.

The line of code that does the actual linking is:

GPIO.add_event_detect(18, GPIO.FALLING, callback=my_callback)

The first parameter specifies the pin (18). The second can be GPIO.FALLING or
GPIO.RISING. If this is set to FALLING, the function will only be called if the GPIO pin
goes from high to low. This is the case in this example, as the switch pulls the input
low against the internal pull-up resistor. If, on the other hand, the second argument is
set to RISING, the function will only be called when the input goes from low to high
(when the switch is released).

The event handler function does not stop the main counting loop while it runs; it
actually runs in its own separate thread of execution.

Switches often bounce when pressed. This means they don’t always transition cleanly
from open to closed but bounce between the two, possibly several times, making it
appear that the button was pressed multiple times in very rapid succession when
actually it was pressed only once.

If you keep pressing the button, you’ll probably see this reflected in the output as the
message appearing more than once for one button press.

The library actually has an option to stop bounce from being a problem, by prevent‐
ing the interrupt from being triggered again within a certain amount of time. To
make use of this feature, just add the extra optional parameter bouncetime to the
add_event_detect call. The value of bouncetime is in milliseconds.

GPIO.add_event_detect(18, GPIO.FALLING, callback=my_callback, bouncetime=100)

See Also
For more information on using switches with the Raspberry Pi, see Recipe 12.1.

10.13 Programming with Interrupts | 267

