
Algorithms

Preface

This notes combine concepts and discussions seen in our G12 Comp.Sci. class
with additional material for exploring further details.

Not all in here is meant to be seen in the course. Much less to be a material
for a test. The added content corresponds rather to an introductory undergrad
level.

The combination of both the concepts from class plus these extensions will
hopefully allow the student to gain an overview of what these topics lead to in
more advanced, university-level courses. In this way, we hope to help bridge the
gap and offer some continuity between end of High School and the following first
year university.

Topics and discussions that are more advanced are denoted as such and have a
heading that starts with a + sign.
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Overview

Figure 1: Algorithms: Summary II

An algorithm is a computational solution to a particular problem. This is what
we call a program.

Programming and Mathematics

Algorithms are related to a type of logical reasoning, called The Principle of
Mathematical Induction (PMI): We code algorithms in the same way we
demonstrate they are correct.

These demonstrations will lead to a recursive solution, which can be implemented
as a recursive function. Sometimes they may as well be transformed into a closed
form which is not recursive.
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Programming and Data Structures

Examples of Abstract Data Types (ADT) are arrays, linked lists, dictionar-
ies, queues, stacks, heaps,. . . They are defined by the efficient methods available
to deal with them: Retrieving, sorting, searching, inserting, deleting, etc.

Data Structures are abstract models of the world

ADT’s represent a model for an efficient solution to a particular problem.

For instance, arrays: If we want to quickly read or modify all 100 elements
of a set, we could reserve space in memory for all of them and store each of
them in a contiguous memory location. Then we could provide a pointer to
the first element. Retrieving any element is very fast: say the 55Th element is
at a memory address equal that of the first one (stored in the pointer) plus 54
positions further up. No need to search nor do complicated operations. Addition
is very fast.

However, if we want to add a new element, 101, we would need to create a new
space for 101 elements somewhere else in memory, if we are not lucky to have
location 101 free. Then copy the previous 100 elements to the new location, and
finally add the new element to it.

Moving things around and accessing memory is extremely slow when compared
to the speeds of the CPU.

Deleting an element is also costly. If we delete say element 55 we create a hole, a
gap in the array. Not all elements lie contiguous in memory now. We thus need
to restore that state of being all next to each other. If we don’t then retrieving
elements becomes complicated as we would need to take into account the holes
created by all previous deletions. But in order to restore order, we need to move
all elements from the 56Th to the 100Th one position down in memory. That’s
costly.

Thus, inserting and deleting elements to an array is costly. But an array is
a model of storing elements that is very efficient for retrieving any
element from a given set on a whim.

Alternatively, if what we want is to efficiently (quickly) add and remove
elements to and from a set, we can use the model of a linked list. In this case
we store each element wherever we find space in memory. Thus elements will
not be contiguous.

Together with each element we also store the memory address (a pointer) of
where the next element is stored. Finally we provide a pointer to the first
element.

How do we insert efficiently an element into a linked list? Say you want to insert
5 at the 3rd position in a linked list composed of 1, 2, 3, 4. Store 5 anywhere in
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memory. Then you make element 2 point to wherever 5 is stored, and make 5
point to wherever 2 was initially pointing!

Thus, linked lists model a way of storing elements that is very efficient
for inserting and deleting elements.

However, retrieving say element 55 out of 100 is costly because we have to start
querying the first element for the location of the second, this one for that of the
third, and so on and so forth till we find where element 55 is located!
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Introductory Examples:

The following are specific problems that exemplify the previous discussion.

1. Tower of Hanoi
2. Slicing a Pizza with n cuts

• Finite Series
3. Domino Effect
4. Josephus Problem

The Tower of Hanoi

Figure 2: The Tower of Hanoi with 8 disks (Image: Wikicommons)

In the Tower of Hanoi we are given the following problem. A set of 8 disks are
piled up through a rod sorted from largest, at the bottom, to smallest at the top.
Two other empty rods are available (see picture). We are asked to change the
pile of disks from the first rod in to another one respecting the following rules:

• Only one disk can be moved at a time
• No disk can be pilled onto a smaller one

Find a procedure, that is, a set of steps that solves this problem. How many
steps do you need? What is the minimum number of steps in which this can be
solved?

It is always a good strategy to first get familiarized with a problem by trying
several simpler cases. For instance, if we had no disk at all, clearly there is
nothing to move. Whence the number of steps needed would be none. If we
had only one disk we can move it in one single step. For 2 disks, lets call the
top-most 1 and the other 2. The way to solve it is, first move 1 to the second
rod, then move 2 to the third rod, finally move 1 again to the third rod on top
of 2. Whence, this case requires 3 steps.
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Table 1: The Tower of Hanoi problem for different number, n, of
disks. The second column list the number of steps needed to move
the pile to a different rod for each case.

n:=“Number of disks” S(n):=“Number of steps”
0 0
1 1 = 0 + 1 + 0 = 21 − 1
2 3 = 1 + 1 + 1 = 22 − 1
3 7 = 3 + 1 + 3 = 23 − 1
4 15 = 7 + 1 + 7 = 24 − 1
5 31 = 15 + 1 + 15 = 25 − 1
...

...

From this point on, we can easily analyze the next cases by using the knowledge
developed from these easier first cases! For instance, let’s consider the case of 3
disks. Again we number them from 1, the topmost, to 3, the one at the bottom.
Consider just the first two. In the previous paragraph we saw how to move the
top 2 disks and this requires 3 steps. Let’s do it. We move disks 1 and 2 to say
the third rod. But then we are free to move disk 3 into the second rod. That’s
one single additional step. Finally we move disks 1 and 2 atop disk 3 using the
same procedure as before. This amounts to another 3 steps. In total thus, for
moving 3 disks we needed 3 + 1 + 3 = 7 steps.

Can you see the trend now? How many steps would we need to move 4 disks?
Can you calculate it without actually doing them?

Recurrence Relations

The table above summarizes the pattern we observe when solving each case.
Clearly, if we have n disks, we can move the entire stack of disks by first moving
the top n− 1 disks to say rod 2, then moving the n− th one onto rod 3, and
finally moving the stack of n− 1 back atop the n− th disk.

Let’s say that moving a stack of n disks requires S(n). The procedure just
explained entails that moving a stack with one more disk, i.e., with n + 1 disks,
requires S(n + 1) = S(n) + 1 + S(n), whence it is

S(n + 1) = 2 S(n) + 1
S(0) = 0

This is an example of a recurrence relation, which include the required base
condition that specifies the value of the function S(n) for a particular value of
n -in this case n = 0.
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The base condition is needed to avoid following the recurrence without end. In
other words, it is not true that S(0) = 2S(−1) + 1, as the function is not even
defined for negative values of n.

On the contrary, what the base condition says is that S(0) is simply 0.

Closed form

From the same table it is not difficult to infer another expression for S(n). We
can see that

S(n) = 2n − 1

This is an example of a closed form.

Why is this called closed?

Why is it not closed something like S(n) =
∑n

k=1 k? What would an open form
be?

There is no precise definition. One calls an expression for a function a closed
form when it makes it easy to evaluate the function even for large values of its
argument(s) (in this case n).

Another way of seeing it is that the expression requires no loop if we had to
implement it in any high-level programming language.

Sure enough, at the machine code even a simple operations may require some kind
of a loop. Also, in high-level languages things like the power pow(b,e) function
are implemented as a truncated sum of terms that given an approximation to
the actual value according to the precision of the machine. The same applies for
calculators.

We ignore these details when convening on the meaning of “closed form”. We
consider them as spells at our disposal any time we need them. If despite that
arsenal of spells we still need to undergo any kind of long loop, then our formula
is not in closed form.

A more technical way to express this is that by a closed form is not defined
in terms of itself, i.e., is not a recursive definition.

Notice we have not defined what exactly we mean by “large values” (of n) or
“long loop”. You could still keep asking why repeating three times a summation
is ok but adding 1000 terms is not a closed form. We won’t dwell further on this
detail. You need to take it as what it is, a convention expressing a .

Slicing a Pizza

We are given a pizza and are told to make n straight cuts. What’s the maximum
number of pizza slices we can get?
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Figure 3: How many slices can we get with 3 cuts? (Image: Wikicommons)

Let’s first consider cutting the pizza the way we usually cut a pizza or a birthday
cake, namely by making all cuts cross at the center of the pizza. In this case
each additional cut we make gives rise to two more slices. Whence, if we would
make n cuts this way we would end up with 2n slices. That would be 6 slices
for n = 3 cuts. Can we do better?

Yes, we can! Consider the third cut. If instead of lining it up with the point the
first two cuts crossed at we do it further off that point we could add 3 more
slices instead of only 2 as before. This would then give us 7 slices for only
n = 3 cuts. This is clearly the maximum number of slices we can get with only
three cuts.

Sure enough, some of your friends getting the smaller slices will not be very
happy. But we never aimed at getting equally-sized slices.

How do we proceed with the fourth cut? Again, if we avoid lining it up with
any of the previous crossings we will obtain the maximum possible number of
additional slices.

It is not difficult to convince yourself that the best the fourth cut can do is
adding 4 more slices.

One could now be tempted to make the following guess: it seems that the
number of slices after n cuts, Rn, equals the number of slices we had before this
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cut, namely Rn−1, plus n:
Rn = Rn−1 + n

with the exception that the zero-th cut adds 1 slice, namely, the whole Pizza:

R0 = 1

Can we prove this guess? Also, and how many slices do we have in total after n
cuts then? Is there a closed form expression for Rn?

Homework: Download the file SlicePizza.ggb and upload it into the Geogebra
webapp. (Open the top-left Main Menu and select Open File, then select the
folder icon on the right of the window). Select and drag the lines and points
around. In which cases does that guess hold? when does it not hold? Add a new
line and count how many more regions you can generate. Instructions: Press the
Tools icon -the triangle on top of a circle on the left of the window- to access
the Lines tool. It offers four options. From left to right, the icons correspond
to segments, lines, rays and oriented segments. Click on the lines icon to draw
more lines. You will need to click two on the canvas in order to create two points
that define your line.

The Domino Effect

Figure 4: Will all dominos tip if we tip the first one? How can we be sure?
(Image: Wikicommons)
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Imagine a row of dominos that extend way beyond the horizon. Let’s say those
are 100, 000, 000 dominos. At say 5cm long each, our row of dominos stretches
over 5 · 10−2 · 108 = 5 106 m or 5000 Km!

Clearly, we would be able to visually inspect only a small part of all dominos, say
105, which stretch over 5km. We could tip the first and actually see whether
all those 105 dominos fall. Over even 107 of them, which would stretch over
500km if we use a small plane like a Cessna and fly low enough.

For argument’s sake, we will assume you have neither the power nor the money
to divert any satellite’s course and task to help you check the whole gigantic row
of 108 dominos. The question then remains:

If we tip the first domino, will all the rest fall?

Find an argument that proves that all will indeed fall. In order to do so, write
a list with all the assumptions and requirements you need in order to develop
your argument.

For instance, the first two assumptions could be

• All dominos have the same shape, size and mass.
• All dominos are equally spaced from their immediate neighbors
• . . .

Continue this list such that

1. all items are either independent from the previous ones or follow from
some of those previous ones

2. the final item contains the conclusion that all dominos fall
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The Principle of Mathematical Induction

Let’s assume that we have two mathematical expressions that depend on a
positive integer variable, say n. Both expressions look different but someone
claims that both expressions give the same result for any value of n. For instance,
the expressions on both sides of the following identity

1 + 2 + 3 + . . . + n = n (n + 1)
2

Clearly, the left and right hand expression coincide for n = 1, as we get 1 = 1(1+
1)/2, which is true. That equality also holds for n = 2: we get 1+2 = 2(2+1)/2,
which is also true. Analogously, we can see it also works for n = 3, 4, 5, . . . But,
does it hold for all values of n? Can we demonstrate it in some way?

Inductive Reasoning alone is Limited

We could check one, two, 10 or hundreds or the first thousands of cases. If for
all these the relation is true, we would be inclined to think it should be true
for all cases. This way of reasoning is called inductive reasoning. However,
the rule that worked for the first 1000 cases could break down for the case 1001.
There is no guarantee that it does work for all cases. The following example
shows a case where a rule may work for the first several thousands elements, yet
not be generally valid and break down beyond that!

Example of the Prime Gaps

Consider the sequence of gaps between consecutive primes: 2,3,5,7,11,13,17,19. . .
The first two primes are 2 and 3, whence the first gap value is 1. The next three
gaps are 2, 2 and 4 corresponding to the jumps from 3 to 5, from 5 to 7 and
from 7 to 11.

Try to check on your own several more of the following prime gaps. Consider
then the following two conjectures

1. All prime gaps are less than 10
2. All prime gaps are less than 100

The first 60 gaps are as follows: 1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, 6, 2, 6, 4,
2, 6, 4, 6, 8, 4, 2, 4, 2, 4, 14, 4, 6, 2, 10, 2, 6, 6, 4, 6, 6, 2, 10, 2, 4, 2, 12, 12, 4, 2,
4, 6, 2, 10, 6, 6, 6, 2, 6, 4, 2, 10.

Clearly, the first conjecture is wrong. It works for the first 29 gaps, i.e., till the
30th prime. This prime is 113. However, the following prime is 127, 14 units
apart. Whence the conjecture is false.

Take the list of all gaps and plot as bars with the sequence of prime numbers
along the x-axis. You will obtain a staircase where the ground level (for the first
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prime 2) is 1-number wide and the first step is 1-unit upwards (from 2 to 3).
This first level is 2-numbers wide (for 3 and 5). Then comes a step of 4 units
(from 7 to 11). And so on and so forth.

The steps upwards in this infinite staircase are called maximal prime gaps.

What about the second conjecture? You can check this Wikipedia page for the
list of the first 77 maximal prime gaps. There you can see that for the first 30802
primes the gaps stay below 100. The second conjecture thus holds true for as
many as over 30000 (initial) cases!

However, the largest known gap as of January 2018 is 8350! Whence conjecture
2 is also wrong.

This example shows the perils of inferring a law or property simply from a limited
amount of inspected cases. Even if those are tens of thousands of cases!

Induction alone is, therefore, not a safe logical argument, in the sense
that it does not provide any guarantee, but at best a likelihood.

The Principle of Mathematical Induction

We have seen that we need a more powerful reasoning procedure than
simply listing evidences.

During the unit on Propositional Logic we have seen some such more powerful,
safe reasoning arguments. For instance, Modus Ponens. We can state this one
in English as follows: IF the conditional (p → q) is true and its antecedent
(p) is also true, THEN we can claim the consequent (q) to be true as well
((p→ q) ∧ p |= q)

The principle of mathematical induction is such a type of argumentation or
reasoning, which helps us demonstrate or prove many such mathematical relations.

Despite its name, mathematical induction is a deductive type of reasoning
that leads to a certain, logical conclusion.

This is the Formulation of the Principle of Mathematical Induction
(PMI): We have an expression that depends on a positive integer variable, say
n (to fix ideas think on e.g. the expression (1 + x)n ≥ 1 + nx with x > −1)

IF

• the expression works for n = 1 AND
• assuming it works for an arbitrary n we can then prove that it also works

for n + 1

THEN it holds for all values of n.
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Figure 5: The Principle of Mathematical Induction (PMI) I: Example 1

Example 1

If n is a positive integer and x is a real number such that 1 + x > 0, then for all
values of n it is true that (1 + x)n ≥ 1 + nx

Proof : We will use the principle of mathematical induction. It goes as follows:

1. Let’s consider n = 0 as base case. Does that inequality holds for n = 0?
Yes, it does. Check!

2. Let’s assume now that it is true for an arbitrary value of n
(5, 7, 3141516 . . .). Can we then prove it holds as well for the next value,
n+1? That is, can we then prove it is true that (1+x)n+1 ≥ 1+(n+1)x?
If we can do this, then we will conclude that the above statement is indeed
true for all values of n.

Let’s do this.

(1 + x)n+1 =a (1 + x) (1 + x)n ≥b (1 + x) (1 + n x)
=c 1 + (n + 1) x + n x2

≥d 1 + (n + 1) x � (q.e.d)

where the justifications for each step are as follows:
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a. Rules of arithmetic for multiplication of powers with the same base
b. By assumption, (1+xn ≥ 1+nx) and we also required that 1+x > 0
c. Rules of algebra
d. Rules of arithmetic: Dropping a positive term in a sum leads to a

smaller value

The symbol� denotes that we successfully completed our proof. Sometimes,
one may see instead the acronym q.e.d which stands for the Latin expression
quod erat demonstrandum. This translates to English as “that what was
meant to be proved”.

Indeed, since we completed those two steps, we can conclude that the inequality
(1 + x)n ≥ 1 + nx holds true for all integer values of n > 0 and for all x > −1.

Example 2

Figure 6: Example 2 of the use of the PMI

The sum of the first n natural numbers Sn =
∑n

k=1 k = 1 + 2 + 3 + . . . is equal
to n (n+1)

2 .

Proof : We will use the principle of mathematical induction. It goes as follows:

1. The base case n = 1 checks. Indeed 1 = 1 (1 + 1)/2
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2. Let’s assume the relation is true for an arbitrary value n and try to prove
it also works for the next value n + 1, i.e., that Sn+1 = (n + 1)(n + 2)/2.

Sn+1 =a Sn + n + 1

=b n
(n + 1)

2 + n + 1

=c n
(n + 1)

2 + 2 (n + 1)
2

=d (n + 1)(n + 2)
2 �

where the justifications for each step are as follows:

a. By definition of the sum of the first n + 1 integers. This equals that
of the first n plus n + 1.

b. By assumption
c. Rules of arithmetic
d. Rules of arithmetic

Exercise 1

We are given the finite sum of n terms

Tn =
n∑

k=1
(3 + 5 n) = 8 + 13 + 18 + 23 + . . . + (3 + 5 n)

and we are asked to

A) find a recurrence relation for Tn.
B) find a closed form for Tn

C) Demonstrate by mathematical induction the result in B)

Solution

A) We just need to express the sum for n + 1 terms in terms of that of n
terms. It is

Tn+1 = Tn + (3 + 5 (n + 1))

which can be trivially seen by expanding the definition of Tn in the right
side.

B) Take the definition of Tn and group common terms:
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Figure 7: The PMI: Exercise 1
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Tn =
n∑

k=1
(3 + 5 n)

= (3 + 5 · 1) + (3 + 5 · 2) + (3 + 5 · 3) + (3 + 5 · 4) + · · · + (3 + 5 · n)
= 3 + 3 + · · ·n times + 3 + 5 · 1 + 5 · 2 + · · · + 5 · n

=
n∑

k=1
3 +

n∑
k=1

5 · k =
n∑

k=1
3 + 5

n∑
k=1

k

= 3 n + 5 Sn

= 3 n + 5 n
(n + 1)

2 = n
5 n + 11

2

where Sn =
∑n

k=1 k = n (n+1)
2 is the sum of the first n integers calculated

in example 2 above.

Figure 8: The PMI: Exercise 1, b). Here S(n) is the summation defined in
example 2 above.

C) We are given the closed form for Tn = n 5 n + 11
2 and we want to prove it is

correct. We will proceed by mathematical induction on the value of n.

Proof :

1. Base case: For n = 1, by definition T1 = 5 · 1 + 3 and that closed
expression gives 1 5·1 + 11

2 . Both coincide. Whence the relation holds
for the base case n = 1.

2. Let’s assuming it works for a particular value n. We want show, it
then also works for n + 1.
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Tn+1 =a Tn + 5 (n + 1) + 3

=b n
5 n + 11

2 + 5 (n + 1) + 3

=c
5 n2 + 21 n + 16

2

=d (n + 1)5 (n + 1) + 11
2 �

Step a) is by definition of Tn as the sum
∑n

k=1 (5k + 3) = 8 + 13 +
18 + · · ·. Step b) is by assumption. Step c) follows from elementary
algebra. The easiest way to see why step d) is correct is by expanding
the last expression and checking it indeed coincides with that of step
c).

Strong Mathematical Induction

There is another formulation of the Principle of Mathematical Induction that
uses a much stronger assumption:

Mathematical Strong Induction: We have a statement that depends on a
positive, integer parameter, n. IF the statement holds for n = 1, AND, assuming
it holds for all values of the parameter less or equal to n, we can demonstrate
that it then also holds for n + 1, THEN the statement is true for all values of n.

Application: Proof of algorithms I

Mathematical induction has a direct application on proving the correctness of
recursive functions.

Indeed, the way we implement a recursive function mimics the steps of a proof
by PMI.

Let’s consider some examples

The factorial function

This function implemented in Python is

def fac(n):
if n == 1 or n == 0 :

return 1
return n * f(n-1)
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f(0) # -> 1
f(4) # -> 24

In JavaScript the same function is:

function fac(n){
if ( n == 1 || n == 0 ) return 1
return n * f(n-1)

}

In pseudo-code:

Algorithm: fac(n):

Input: n (non-negative integer)
Output: m, a positive integer equal to n!

Begin
m <-- 1
if n > 1 then

m <-- n * fac( n-1 )
End

Let’s proof these implementations are correct. That is, for any integer n, any of
these implementations yields the value of n! = n · (n− 1) · · · · · 2 · 1

Proof :

1. Base case: We have fac(1) = 1 and 1! = 1. Whence it works for the base
case. Notice that without the first line in the definition of either version of
fac, the base case would not be satisfied. Instead, the code would lead to
an infinite recursion loop.

2. Let’s assume it works for an arbitrary, yet concrete value n (but different
than the base case). That is, we assume that fac(n) gives us indeed the
correct value of n! for such an n. We now aim to show that it then also
works for the next value n + 1, i.e., that fac(n + 1) = (n + 1)!.

Indeed, the second line of both implementations allow us to write

fac(n + 1) =a (n + 1) · fac(n) =b (n + 1) · n! =c (n + 1)!

where step a) follows from the implementation, step b) from the induction
assumption, and step c) from the rules of arithmetics �.

+(advanced) Proving the correctness of a loop

Mathematical induction can be used to prove the correctness of a loop.

Let’s consider the case of a program the converts a decimal number into binary:
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Algorithm toBinary(n):

Input: n (positive integer)
Output: b (array of bits corresponding to the binary representation of n)

Begin
t <-- n
k <-- 0
b <-- []

while t > 0
k <- k + 1
b[k] <-- t mod 2
t <-- floor( t/2 )

End

Proof : Let’s prove that this algorithm is correct.

Induction hypothesis: At any step during that loop, i.e, for any value of k, it
holds that

n = tk 2k + mk

where mk is the integer represented in binary by the array b at step k and tk is
the value of of t at that same step.

That relation doesn’t change during the loop, even though t, k and m keep
changing!

We say that this relation is an invariant of the loop.

Table 2: The loop invariant tk · 2k + mk stays constant in value
during loop, even though all the local loop variables may be changing
during the loop iterations. Example for input value n = 13. At the
end of the loop tk = 0 and m contains m = 1 · 24−1 + 1 · 23−1 + 0 ·
22−1 + 1 · 21−1 = b1101 the binary representation of 13.

k tk b[k − 1] mk tk · 2k + mk

0 13 0/nil 0 13 · 20 + 0 = 13
1 6 1 1 · 21−1 6 · 21 + 1 = 13
2 3 0 0 · 22−1 + 1 · 21−1 3 · 22 + 1 = 13
3 1 1 1 · 23−1 + 0 · 22−1 + 1 · 21−1 1 · 23 + 5 = 13
4 0 1 1 ·24−1 + 1 ·23−1 + 0 ·22−1 + 1 ·21−1 0 · 24 + 13 = 13

Let’s proceed with the proof:

1. It holds at the beginning of the loop: Before the first statement of the loop
is executed the values are k = 0, by definition, and m = 0, because the
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array b is empty. Finally, it is t0 = n by definition. Whence it holds.

2. Its truth at step k implies that at step k + 1: We aim to prove that

n = tk+1 2k+1 + mk+1

It is tk+1 = btk/2c (e.g., b7/2c = 3) and thus tk+1 2k+1 = btk/2c 2 2k.

Furthermore, mk+1 = mk + (tk − btk/2c 2) 2k, by definition.

If we plug this last two relations into the loop invariant above we have

tk+1 2k+1 + mk+1 = btk/2c 2 2k, + mk + (tk − btk/2c 2) 2k = tk 2k + mk �

Application: Design of Algorithms

Consider a list of numbers x1, x2 . . . xn. Find as many as possible different
algorithms for sorting such a list in increasing order. If you already have seen one
such algorithm before, you are asked to come up with one completely different.

To fix ideas you could think on only n = 5 elements and draft by hand some
pseudo-code.

Give yourself at least five minutes to think about it before you go on reading. If
by then you do get an idea of an algorithm, you are asked to come up with an
additional one. . .

. . .

. . .

Maybe you were inspired and quickly came up with a first alternative sorting
algorithm. However, likely you got then stuck when trying to come up with an
additional one.

How can we create an algorithm out of the blue? Is there a guiding principle that
could help us in writing a program that sorts those numbers say in increasing
order?

The answer is that the Principle of Mathematical induction is one such general
guiding idea in designing algorithms. Let’s see how it is so.

As we mentioned before, the gist of the PMI is to spread a feature over the rest
of the elements of a set, given that one (or a special few) are known to have such
feature. This is the Induction (or reduction) step of the PMI.

Here is how we apply it to design an algorithm. Consider the problem of sorting
a list of n numbers:
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The Insertion-Sort sorting algorithm

1. Induction Hypothesis: Following the standard variant of the PMI, we
make the assumption that we can already sort a list of smaller size!
That is, We assume that we can sort a list of n− 1.

2. We then task ourselves to see how we can extend the sorting process
to a list of one more element, i.e., from n− 1 to n elements.

Let’s assume we already sorted four elements x1 = −17 ≤ x2 = −3 ≤
x3 = 1 ≤ x4 = 1 and we are given a fith number x5 to sort among the
previous ones. We are not told its value, but we need to come up with
a recipe that guaranties that the five elements will be sorted in the end.
How can we achieve it?

1. Compare x5 to x4. If x5 > x4 then we leave x5 at the end of the list
x1 ≤ x2 ≤ x3 ≤ x4 ≤ x5 and the sorting is finished.

2. Otherwise, if x5 < x4, then we know that x4 will be the last element:
x1 ≤ x2 ≤ x3 ≤ x5 ≤ x4. Now we compare x5 to x3. If x5 > x3
then we leave x5 as the 4th element of the list and the sorting is
finished.

3. Otherwise, if x5 < x3, then we know that x3 will be the 4th element:
x1 ≤ x2 ≤ x5 ≤ x3 ≤ x4. Now we compare x5 to x2. If x5 > x2
then we leave x5 as the 3rd element of the list and the sorting is
finished.

4. Otherwise, if x5 < x2, then we know that x2 will be the 3rd element:
x1 ≤ x5 ≤ x2 ≤ x3 ≤ x4 Now we compare x5 to x1. If x5 > x1
then we leave x5 as the 2nd element of the list and the sorting is
finished.

5. Otherwise, if x5 < x1, then we know that x1 will be the 2nd element:
x5 ≤ x1 ≤ x2 ≤ x3 ≤ x4. As there is no other element, the sorting
is finished.

3. Finally, we prove that the previous procedure works for a base case: For
a list of n = 2 elements, the previous steps will trivially give the correct
sorting.

Whence, we just proved that the present algorithm gives an ascending
sorting of a list of numbers of arbitrary size n.

The following is an implementation of the Insertion-Sort algorithm.

Algorithm: InsertionSort( ar )

Input: ar (array of numbers)
Output: new array with numbers in ar sorted from small to big

Begin

22



n <-- size( ar )
if n < 2 then return ar

ar <- InsertionSort( ar[0:n-1] ) + ar[n-1:]

i <-- n-1
do

flip <-- false
if ar[i] < ar[i-1] then

tmp <- ar[i-1]
ar[i-1] <-- ar[i]
ar[i] <-- tmp
flip = true
i <-- i-1

while i > 0 and flip
return ar

End

The Merge-Sort sorting algorithm

The following is an implementation of an algorithm for sorting a list of items, in
this case, numbers, that is called Merge-Sort.

function mergeSort(ar){

}

TODO! (May 3, 2018)

+Reverse Induction (Advanced)

Consider the set of all natural numbers N = {1, 2, 3, . . . }. The set of all even
natural numbers E = {2, 4, 6, . . . }is clearly 1) a subset of N and 2) an infinite
such subset, that is, it contains as well an infinite number of elements.

Question: Find at least three more infinite subsets of the natural numbers.

Mathematical Reverse Induction: IF a statement is true for an infinite
subset of the natural numbers AND if its truth for an arbitrary n implies the
truth for n− 1, THEN the statement is true for all natural numbers.

Example: We will use the reversed induction principle for proving that the
geometric mean is always smaller than the arithmetic mean, i.e., that

(x1 · x2 · · ·xn)
1
n ≤ x1 + x2 + . . . + xn

n
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Proof : 1) In reversed induction the base case consist in checking or proving
that the relation holds for an infinite subset of the natural numbers. In this case
we will consider the case of all powers of two P2 ≡ {1, 2, 4, 8, 16, . . . , 2k, . . . }.

We will prove by standard induction that the relation holds for all n = 2k, i.e.,
for all n that is a power of 2. Notice that this will be standard induction on k!

1.1) Let’s see first the base case of this standard induction argument: k = 1.
For n = 21 = 2 we have the inequality √x1 · x2 ≤ x1+x2

2 , which is equivalent
to 4 x1 · x2 ≤ (x1 + x2)2 after squaring both terms. Is this true? Yes, and we
can easily see it from the fact that (x1 − x2)2 ≥ 0 as the square of any real
number is either positive or zero. Expanding this last expression and adding
and subtracting −2x1x2, we find (x1 + x2)2 − 4 x1 · x2 ≥ 0, which is what we
wanted to demonstrate. Hence, it holds for n = 2.

1.2) Let’s assume the inequality holds for an arbitrary n = 2k with k > 1 and
lets try to prove it then also holds for 2k+1 = 2n.

(x1 · x2 · · ·x2n)
1

2n =
√

(x1 · x2 · · ·xn)
1
n (xn+1 · xn+2 · · ·x2n)

1
n

The right-hand side has the form √y1 · y2 with y1 = (x1 · x2 · · · xn)
1
n and

y2 = (xn+1 · xn+2 · · ·x2n)
1
n . Whence, it is

(x1 · x2 · · ·x2n)
1

2n = √y1 y2 ≤
y1 + y2

2

But by assumption the relation holds for n. Thus y1 ≤ x1 + x2 +... + xn

2 and
y1 ≤ xn+1 + xn+2 +... + x2n

2 . Whence

y1 + y2

2 ≤
x1 + x2 +... + xn

n + xn+1 + xn+2 +... + x2n

n

2 = x1 + x2 + . . . + xn + xn+1 + xn+2 + . . . + x2n

2 n

In summary, we have proven that

(x1 · x2 · · ·x2n)
1

2n ≤ x1 + x2 + . . . + xn + xn+1 + xn+2 + . . . + x2n

2 n

for n = 2k. This completes thus the first part.�

2)Let’s now prove that the inequality actually holds for any value of n, not just
powers of 2. Here is where we use the reverse of reversed induction. Namely,
now we need to prove that we can go back.

Let’s assume it holds for an arbitrary n and prove the inequality for n− 1.

Be y = x1 + x2 +... + xn−1
n−1 , then by assumption it holds that

(x1 · x2 · · ·xn−1 · y)
1
n ≤ x1 + x2 + . . . + xn−1 + y

n
= (n− 1) y + y

n
= y
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Whence we have
(x1 · x2 · · ·xn−1 · y)

1
n ≤ y

which, taking the n− th power can be written as

x1 · x2 · · ·xn−1 · y ≤ yn =⇒ x1 · x2 · · ·xn−1 ≤ yn−1

and taking now the n− 1-th root we get

(x1 · x2 · · ·xn−1)
1

n−1 ≤ y = x1 + x2 + . . . + xn−1

n− 1 �

Summary

The gist of the Principle of Mathematical Induction is thus having a feature
valid for some cases and from there extending its validity to the rest of the cases.

A virus spreads somehow similarly: One or more initial hosts get it. When they
later interact with other people they spread sickness to (eventually) all the rest1.

The initial infection is like the base case; the interaction that leads to the
spreading of the virus is like the PMI’s second step (reduction step2).

Incidentally, this may be a funny way to see Modus Ponens: If the initial host
gets infected (p) and the hosts interacts with someone else (p→ q), the victim
gets as well infected (q). This is how the virus of mathematical truth spreads
out!

Review Exercises

1. Prove that xn−yn is divisible by x-y for all natural numbers x, y (x 6= y) , n.
2. Extend the sum of example 2 to Ten =

∑n
k=0 (c1 + c2 i) where c1, c2 are

constants. Note: In example two, it is c1 = 3 and c2 = 5.
3. Find the sum S2n of the squares of the first n natural numbers and prove

your claim.
4. Find the following sum and prove your claim: Pcn =

∑n
k=1 k (k + 1) =

1 · 2 + 2 · 3 + 3 · 4 + 4 · 5 + . . . + n (n + 1)

5. Find the following sum and prove your claim: Qn =
∑n

k=1
1

2n = 1
2 + 1

4 +
1
8 + . . . + 1

2n

1Thanks to vaccinations and other measures of disease control we can break that spreading.
In this way, the PMI breaks down for viruses and thus humanity survives. . . so far.

2Some call the base case, the induction hypothesis and the second step the reduction step or
induction step. Reduction is meant as reducing the truth of the n + 1 case to that of the n case
and, thus, feels more descriptive. We will call the base case, base case, and use induction
hypothesis as an alternative name for the antecedent of the reduction/induction step!
That is, the induction hypothesis is when we say “let’s assume this works for n”, before we go
on and try to prove it then also works for n + 1.
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6. Find a closed form for the sum G̃n =
∑n

i=0 i · 16i

7. Following the discussion on the problem of cutting a Pizza with n cuts,
determine the number of regions in the plane formed by n-straight cuts.
Prove your result.

Problems

1. Find the closed expression for a general geometric progression Sn =∑n
k=0 a xk, where a and x are constants.

2. Find an expression for the sum of numbers of the i-th row of the following
triangle and prove its correctness.

1 = 1
3 + 5 = 8

7 + 9 + 11 = 27
13 + 15 + 17 + 19 = 64

21 + 23 + 25 + 27 + 29 = 125

3. Prove that 1
2 + 1

4 + 1
8 + . . . + 1

2n < 1

4. Find a closed expression for the sum Gn =
∑n

k=1 k 2n−k and prove your
result by mathematical induction.

5. The Fibonacci series is characterized by the following (Fibonacci) relation

Fn = Fn−1 + Fn−2 with F1 = 1 F2 = 1

Prove by mathematical induction that its closed form is

Fn = 1√
5

(
1 +

√
5

2

)n

− 1√
5

(
1 −

√
5

2

)n

Hint: Verify the following identity and use it:

2
(

1±
√

5
2

)2

= 3±
√

5

Which form of the Principle of Mathematical Induction will you need to
use?

6. Consider the following recurrence relation Gn = Gn−1 + Gn−2 + 1 G1 =
1 G2 = 1 and compare it to the Fibonacci one Fn. Because of the extra
1 it seems obvious that Gn > Fn. Yet the following seems a valid
proof that Gn = Fn − 1, namely (by the strong PMI): Assume that
Gk = Fk − 1 ∀ k ≤ n. We can then prove it holds for n + 1 as well:

Gn+1 = Gn + Gn−1 + 1 = Fn − 1 + Fn−1 − 1 + 1 = Fn+1 − 1

What is wrong with this proof?
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7. +Consider the following recurrence relation

En = En−1 + n − 1
3 ; E1 = 2

3

a) Find an expression for En as a sum by repeatedly applying the
recurrence relation on the right-hand side (Hint: En = En−2 + n−
1 + n− 2/3)

b) Find a closed form for En

c) Prove that closed form by mathematical induction
8. ++Perturbation method for sums: This works as follows. We have a

sum, called it Sn =
∑n

k=0 ak, where ak is an expression that depends on
k (e.g., ak = k2k). Then we write Sn+1 in two ways by splitting off both,
its last and its first term

Sn+1 = Sn + an+1 = a0 +
n+1∑
k=1

ak = a0 +
n∑

k=0
ak+1

At this point, we work on the last sum and try to express it in terms of
Sn. If we succeed we obtain an equation for Sn whose solution is the sum
we seek.Use the perturbation method to
a) find the sum Sn =

∑n
k=0 2k

b) find the sum Sn =
∑n

k=0 k 2k

c) find the sum of the general geometric progression of problem 1
9. Euler Formula

Useful results

1. (a± b)2 = a2 ± 2 · a · b + b2

2. (a± b)3 = a3 ± 3 · a2 · b + 3 · a · b2 ± b3

3. Binomial Coefficient:
(

n
k

)
= n!

k! (n−k)! . Example:
(5

2
)

= 5!
2! 3! = 5·4

2! =
5 · 2 = 10

4. Newton’s binomial: (a± b)n =
∑n

k=0
(

n
k

)
(±1)k an−k bk
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The art of programming

Before this course, whenever you had to write a program, most likely you were
always already coding while at the same time trying to figure out how to solve
the problem and thus, also trying to figure out what to code.

This is a bad strategy called spaghetti coding because it leads to a twisted and
tangled program flow or because of its convoluted, if not simply, wrong program
logic. It is very prone to program-logic errors, that is, the program will
not always do what we expected it to do. It is also difficult to debug!

We have seen, however, that very often we can use the Principle of Mathematical
Induction to describe the solution of a problem in terms of a computer algorithm.

Only once we have we the correct pseudo-code should we proceed
with the actual coding in any given language.

This way, coding is reduced to a task of translation from pseudo-code into a
programming language.

The advantages of this way are that

1. we have the correct understanding of our problem.
2. we sketched the correct logic of our algorithm in pseudo-code.
3. our coding will not have logic errors
4. the errors in coding the algorithm will mainly be in syntax
5. coding can be done much faster.

Thus we should always try write down our algorithm on paper first, for instance
in the form of pseudo-code. Then we should try to make sure the logic described
by the pseudo-code is the one we want. Finally, we translate the pseudo-code to
any programming language we want to.

Learning by example: Basic Sorting Algorithms

Let’s exemplify the previous ideas with some examples. We will study some
basic algorithms for sorting a list or array of numbers.

The algorithms we will see are Bubble-sort, Insertion-sort, Selection-sort, Quick-
sort and Merge-sort.

We will learn how

1. the Principle of Mathematical Induction allows us to specify an algorithm
whose logic is correct.

2. to summarize in a few words what an algorithm does. This is key to (1)
remember it and (2) to communicate with others about it.

3. once we have the previous steps completed, to write down a pseudo-code
for that algorithm
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4. unfold an recursive algorithm that was obtained using the PMI. We will see
that, while PMI allows use to design an algorithm on solid grounds, it leads
to recursive algorithms that can easily exhaust the memory resources of
our computer. More specifically, we will often run out of memory available
for the stack, with message like Maximum call stack size exceeded. In these
cases, we need to transform the recursive code into one using loops.

After that, we will translate our algorithms to 3 different programming languages:
JavaScript, Python and C.

Statement of the problem: We are given a list of n > 0 numbers
R1, R2, . . . , Rn and we want to sort them in increasing order.

To fix ideas, we may think on a finite, small case like n = 5: R1 = −17, R2 =
−3, R3 = 1, R4 = 1, R5 = 3.

Bubble-sort

Bubble-sort is not a very useful sorting algorithm. The reason is because it is
very slow.

However, the idea of the bubble-sort is very easy to summarize:

Idea (without using PMI): Sweep array comparing each element againts its
neighbor on the right. Swap them if the latter is smaller. Repeat until a sweep
is done w/o any swap.

Pseudo-code:

Algorithm: BubbleSort(A)
Input: A ( array of numbers)
Output: A (w/ numbers sorted in increasing order)

Begin
n <-- len(A)
swapped <-- True
while swapped

swapped <-- False
for i <-- 0 TO n-2

if A[i] > A[i+1] then
Swap A[i], A[i+1]
swapped <-- True

End

Python implementation:

n = len(A)
swapped = True
while swapped :
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swapped = False
for i in range(0,n-1):

if A[i] > A[i+1]:
tmp = A[i+1]
A[i+1] = A[i]
A[i] = tmp
swapped = True

Recursive Bubble-sort

We have seen how Bubble-sort works. However, that was an algorithm designed
without using PMI.

In our key point 4 above, we mentioned that PMI always leads to a recursive
algorithm and that such an algorithm can always be rewritten using loops (this
we called it unfolding recursion).

How can we design bubble-sort using PMI? What we need is to find the
right induction hypothesis. Reviewing the previous algorithm will help pinpoint
the key idea.

We know it’s about swapping contiguous pairs. And only when no swapping
can be made do we know we are done. This gives us a key insight of what is
happening.

As we started from the beginning, the largest element of the array will always
end up as the last element after this first sweep.

Once this is done, we can then concentrate on the remaining n − 1 elements.
This gives us the key to formulate our induction hypothesis

Buble-sort Induction hypothesis: Let’s assume we know how to sort a list
of n elements.

The induction step is as follows: Consider now the case of n + 1 elements. Split
the array into two parts: the first element and the remaining n. By the induction
hypothesis, we know how to sort the latter. We are left with making sure the
first elements gets swapped into its right position.

But this can be easily done: we just sweep the list from left to right and keep
swapping that element everytime it is larger than the next element.

Base case: Trivially it works for an array of size n = 1 �.

Thus, we have found the gist of the bubble-sort algorithm, from the point of
view of the PMI:

Idea: Swap an element all the way down the array until it is no longer larger
than next one. Assume this had been done before from the second element on.

Pseudo-code:
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Algorithm: BubbleSort-Rec(A)
Input: A (array of numbers)
Output: A (array w/ numbers sorted in increasing order)

Begin
n <-- len(A)
if n <= 1 return A
A <-- A[0] ++ BubbleSort-Rec( A[1:] )
for i from 0 to n-2

if A[i] > A[i+1] then swap A[i] & A[i+1]
return A

End

JavaScript Implementation:

function BubbleSortRec(A){
var n = A.length
if ( n == 1 ) return A

A = [ A[0] ].concat( BubbleSortRec(A.slice(1)) )

var tmp = 0.0
for(var i = 0 ; i < n-1 ; i++ ){

if ( A[i] > A[i+1] ){
tmp = A[i+1]
A[i+1] = A[i]
A[i] = tmp

}
}
return A

}

Exercises

1. Implement Bubble-sort in JavaScript and C. Make sure to add comments
that include the idea in plain english and the corresponding pseudo-code
in each case.

2. Implement the recursive version of Bubble-sort in Python and C. Make
sure to add comments that include the idea in plain english and the
corresponding pseudo-code in each case.

3. Estimate the number of swaps required in the worst case of the Bubble-sort
algorithm for an array of size n.

4. Answer the same question for the case of the recursive version of the
Bubble-sort algorithm.

5. Implement a non-recursive version of the Insertion-sort algorithm seen in
the previous chapter. Make sure to add comments that include the idea in
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plain english and the corresponding pseudo-code in each case.

Insertion Sort

Recursive Insertion Sort

Exercises

Selection Sort

Rercursive Selection Sort

Exercises

Quicksort

This version of Quicksort is partly recursive.

Idea: Recursively partition array by pivot into left and right blocks.

Partition by pivot:

• Idea:

Partition array A between l-th and r-th elements (both included) using a
given value as the “pivot”. That is, once done, all elements < pivot, will
be on left of pivot; all > pivot, on its right.

• Detail (elaboration):

Initially, choose as pivot A[p] with p=0, i.e., the first element of array.

Given a pivot A[p], consider a value at p<i<r. If A[i]>A[p], check next i.

Otherwise, swap A[i] w/ A[p+1], then swap A[p] w/ A[p+1]. Effectively,
this will put the original A[i] on the left of the pivot A[p], which has moved
one to the right to accommodate A[i]. The original value on the right of
A[p] is moved to where A[i] was.

If A[i] <= A[p] then

Initiallly: A[0] ... A[p-1] A[p] A[p+1] ... A[i] ... A[N-1]
^ ^^

After 1st swap: A[0] ... A[p-1] A[p] A[i] ... A[p+1] ... A[N-1]
^ ^^

After 2nd swap: A[0] ... A[p-1] A[i] A[p] ... A[p+1] ... A[N-1]
^^ ^
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Increment p by 1. Repeat for all i from p+1 to r.

Return index of pivot: p

Base case, 2 elements. Ok (although one superfluous swap)

Quicksort is a popular algorithm because it is easy to implement and is very
fast. We will see more about this in the next chapter.

Recursive Quicksort

Exercises

Merge Sort

Recursive Merge Sort

Exercises

Review Exercises
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Complexity of Algorithms: Growth and Big-O notation

What is Complexity of an algorithm? Why do we care?

Figure 9: Complexity of Algorithms: The Big-O notation

We know that for any given problem, we can find many different algorithms that
solve it. Which one should we choose then? Anyone, arbitrarily?

Clearly, in most of the cases we would prefer a faster algorithm instead of a
slower one. The less time it takes to compute things the faster we can come up
with an answer to our problem, and the faster we can move on to the next one.
And it is only by solving many problems in as little a time as possible that we
may achieve a deeper understanding of the world and ourselves. Time is money,
says the adage.

Whence we would like to go for the fastest possible algorithm. Can we do that
always? The answer is no. Sometimes, the fastest algorithm will require more
memory than we can possibly afford. In these cases we need to settle for the
algorithm that requires the least amount of memory. A good case in point is
the software that runs in embedded systems and microcontrollers. Up to some
extend, smartphones also require a sensible management of memory, as currently
they still come with a rather small amount of RAM.

In this course, we will focus on Time Complexity only. How can we measure
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time complexity? It seems only natural to think of it as the number of “steps”
that the computer must do in order to run the algorithm. However, this definition
still leaves room for calculating such number in different ways.

Say Alice is constantly requested at work to sort a random array of ID’s, e.g.,
[1,−2,−45, 55, 3, 19, . . . ] but her friend Bob is regularly tasked with sorting
arrays of ID’s that are the same size as those of Alice, but where 70% of
them come already sorted. E.g, Bob gets things like [1, 1, 1, 1, 19, 3, . . . ] or
[−45,−2, 1, 3, 55, 19, . . . ]. Bob will optimize his algorithm for the type input he
usually gets, and so will Alice do as well. Every now and then, a mistake is made
in the processing center and Bob gets a random array of ID’s, much like those of
Alice. His algorithm is be very slow in those cases (takes 10 times more), but
the chances that this happens, he already found out, are small, 1 out of every
10 cases. Whence, he keeps that optimized algorithm, because on average it
works fast.

Now the company find itself in a bear market, where they get much less demands
for their services. This forces them to improve much more their results in order
to stay ahead of the competition: even the worst case of a sorting must
finish in a given amount of time! This means, Alice and Bob, both need to
use an algorithm that guarantees a worst-case running time less than that limit.

In this course, we will in addition focus only on time complexity in the
worst-case scenario.

Growth of functions

Consider the following different functions:

s(n) = 2n, f(n) = n3, g(n) = n2, h(n) = n, j(n) = log(n), k(n) = 1

. For a value like n = 10, we have

s(10) = 1024, f(10) = 1000, g(10) = 100, h(10) = 10, j(10) = 1, k(10) = 1

and the following inequalities hold:

s(10) ≥ f(10) ≥ g(10) ≥ h(10) ≥ j(10) ≥ k(10)

It so happens that these inequalities also hold for any large enough value of n:

s(n) ≥ f(n) ≥ g(n) ≥ h(n) ≥ j(n) ≥ k(n)

Of course, for small enough values, that may not be true. Indeed, for n = 0,
f(0) = g(0) = h(0) = 0, s(0) = 1, j(0)→ −∞ and k(0) = 1; and for n = 1 it is
s(1) = 2, f(1) = g(1) = h(1) = k(1) = 1, j(1) = 0.

But in computer science, when analyzing the efficiency of our algorithms, we
will be interested in the growth of functions for large values of their arguments.
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Figure 10: Different function grow at a different rate when the argument increases.

There is a special notation for stating the inequalities above. That is the so-called
Big-O notation.

j(n) = O(h(n))
h(n) = O(g(n))
g(n) = O(f(n))
f(n) = O(s(n))

In general, writing something like f(n) = O(g(n)) means that there exists a
constant value c, such that for large enough n, it holds that f(n) ≤ c g(n).

In other words, it means that the function f can be bounded by the function g.

Example: Sometimes we may write as well things like Tn = 3n2 + O(n) or
S(n) = 2 log2(n) + 5n + O(1)

Main Theorem of the Big-O Notation

Definition: We say a function f(n) is monotonically growing/increasing
when for any two values n1 ≤ n2 it happens that f(n1) ≤ f(n2).

In plain words, the graph of the function never decreases.
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Example: The function f(x) = x2 is not monotonically increasing. For n1 =
−2 ≤ n2 = −1 it is f(−2) = 4 ≥ f(−1) = 1. But f(x) = x3, g(x) = 2x, h(x) =
x, j(x) = log2(x) they all are monotonically increasing.

Homework: Using the Geogebra webapp plots all these functions and check
they all indeed grow monotonically.

Theorem (Main Big-O theorem): For any monotonically growing function
f(n), and all constants c > 0 and a > 1,

(f(n))c = O(af(n))

In other words, an exponential function grows faster than a polynomial function.

Example: for f(n) = n the theorem states that

nc = O(an)

for any c > 0, a > 1. In plain words, this results says that a power grows
slower than any exponential.

Example: Substituting loga n (logarithm of n in base a) for f(n) in the Big-O
theorem, we obtain

(loga n)c = O(a(loga n)) = O(n).

This can be read as the logarithm grows slower than a linear function.

From the main Big-O theorem, it follows the following two results:

Lemma3: If f(n) = O(s(n)) and g(n) = O(r(n)) then

1. f(n) + g(n) = O(s(n) + r(n))
2. f(n) · g(n) = O(s(n) · r(n))

Basically, this lemma implies that the growth rate of a compound process can
only be larger than that of its components.

Additional Notation

Big-Omega Notation

We have seen that the Big-O notation is tantamount of the relation ≤. If we say
f(n) = O(g(n)), by definition, it means f(n) = c g(n) for some constant c > 1
and for large enough values of n.

Of course, if f(n) = O(g(n)) then it is also true that “g(n) is always larger than
f(n)” (for large enough n).

3A lemma is a little theorem that is easy to prove given a previous, much harder, big
theorem.
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Is there a way to express this exactly like that with some symbol? Yes, there is,
namely using the Big-Omega notation

g(n) = Ω( f(n) )

which means there is a constant c > 1 such that g(n) ≥ c f(n) for large enough
values of n.

Example: For f(n) = n3 and g(n) = 2n it holds that f(n) ≤ c g(n) for the
following pair of values for c and n

Table 3: For each row, it holds that f(n) ≤ c g(n) for n ≥ n∗ and
f(n) = n3, g(n) = 2n. That is, for each row it is f(n) = O(g(n))
and g(n) = Ω(f(n)).

c n∗ f(n∗)/g(n∗)
4 4 4
2 8 2
1.1 10 0.976

Homework: For each row of the above table, find the value of the con-
stant c′ such that g(n) ≥ c′ f(n) for n ≤ n∗, that is, such that g(n) =
Ω(f(n)) for n ≤ n∗.

Big-Theta Notation

What happens for function like, say, f(n) = 2 n + 30 and g(n) = 10 (n− 1)? Can
we use the Big-O notation here? What about the Big-Omega notation?

Clearly, both of the previous relations hold for large enough values of n.

Indeed, it is f(n) ≤ c g(n) for c = 4 and n ≥ 2, whence f(n) = O(g(n)). But it
is also true that f(n) ≥ c∗ g(n) for c′ = 5 and n ≥ 2.

Whence, both functions have the same growth rate. We can express this by
using the Big-Theta notation as

f(n) = Θ(g(n))

which means that f(n) = c g(n) for some c > 1 and large enough values of n.

Exercises

1. Go to https://www.geogebra.org/graphing?lang=en. There plot the follow-
ing functions: y = 2x, y = x3, y = x2, y = x log2(x), y = x, y = 1 Which
function grows faster?
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2. Check out this video and revisit your answers from exercise 1.

3. Sort the previous functions from fastest growing to slowest growing.

4. The following table lists a set of different functions. Order the expressions
on the first column from slowest growth to fastest and list your answer
on the second column. Note: a running time of n2 means we deal with a
Big-O growth of O(n2).

running times (unsorted) sorted
1 1

n1.5

1.1n

n log2 n
log500 n

n
n3

n2

5. For the functions of the previous table, find c and n∗ for each consecutive
pair that makes the Big-O relation hold.

6. 1) Find how the function h(x) = x3/2x behaves. Does it have a maxi-
mum? If so, locate it, i.e., find the vale of x for which is peaks. 2)
Plot this function using the above link for Geogebra webapp. What
does this plot tell us about the Big-O relation?

7. For f(n) = 2n + 30 and g(n) = 10(n− 1) use Geogebra webapp and plot
both f(n)/g(n) and g(n)/f(n). How can these plot help us determine
the constant c for the relations f(n) = O(g(n)), f(n) = Ω(g(n)) and
f(n) = Θ(g(n))?

8. Check that 5 n2 + 15 = O(n2). Find a constant c for which the bound
holds and state for which value of n it starts holding.

Useful result

1. Stirling approximation: n! =

Sums (?)

1.
∑

i
2.
∑

ia a = 2, 3
3.
∑

2i

4.
∑

i 2i

5.
∑

i 2n−i
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Recurrence Relations

Intelligent guesses.

T (g(n)) = E(T, , n)
T (n) ≤ f(n)

}
→ f(g(n)) ≥ E(f, n)

Example: g(n) = 2n, E(T, n) = 2T (n) + n− 1 (n = 2k)

Example: g(n) = 2n, E(T, n) = 2T (cnb) + n− 1

Exercise: Guess Fibonacci F (n) = F (n− 1) + F (n− 2) and F (1) = F (2) = 1.
Hint: Doubling too much.

Divide & Conquer

a ≥ 1, b ≥ 2 c > 0, k > 0
T (n) = a T (n/b) + c nk

T (n) =

 O(nlogb a) a > bk

O(nk logb n) a = bk

O(nk) a < bk

Full history

T (n) = c +
∑n

k T (k) ⇒ T (2) = c + T (1)

Exercise: (Avg Qsort) T (n) = n− 1 + 2
n

∑n−1
k=1 T (i) T (1) = 0 n ≥ 2

ADT

Arrays

Linked Lists

Sorting

Bluble Sort

Merge Sort

[ Bucket & Radix Sort]Bucket & Radix Sort4

4Pag. 127 Udi Manbert
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Insertion & Selection sort

Quicksort

Heapsort

Searching

pp 120 U.M.

Queue

Stack

Trees: heap

Join & Union

Graphs: MCST, Knapsack,. . .

Sequence Comparisons

pp 155 Udi Manbert

Probabilistic Algo

pp. 159 U.M.

Finding Majority

Finding Mode

Graph traversals

pp187 U.M.
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Depth first

Breath first

Single-source shortest path

MCST

All shortest paths

Geometry

Point inside polygon

Construct simple polygon

Convex Hull

Closest Pair

All intersections

Algebraic & NUmerical

Exponentiation

Euclids algo GCD

Matrix Multiplication

Boolean Matrices

Fast Fourier Transform
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