G11-Term2-Test3-Solutions

January 20, 2020

1 Computer Science G11

1.1 Term 2 Test 3
Date Mon Jan 20 2020

1.2 NAME:

2 1 (KtiCa) (40%) Implement a stack class. Make sure to satisfy the

In computer science, a stack is an abstract data type (for the sake of this problem, think of this as a
class) that serves as a collection of elements, with two principal operations: push, which adds an
element to the collection, and. pop, which removes the most recently added element that was not

following requirements and definitions.

yet removed.
The interface of your code should be as follows

n n n n n n n n n nn

3 2 (KtiCa) (40%) Implement a joining of stacks, that is, an operator that
takes two stacks and returns a new stack containing the union of the

= Stack() #creates an empty stack

.popQ) # returns
.push('hello"')
.push(3)

.len() # returns
.pop QO # returns
.len() # returns
.push([5,7,9, 'foo'])
.len() # retutns
.popO) # returns
.popQ) # returns

None

2, i.e, the number of items in the stack
3 removing it from the stack
1

'foo!

both stacks’ elements.

The interface of your code should be as follows

A = Stack([0,2,4,6])
B = Stack([1,3,5,7])
C = AxB

C.len() # 8
C.pop() # 7
C.pop() # 5

4 3 (KtiCA) (20%) We may say that two stacks are equal when they store
the same elements. Implement the comparision of stacks.

The interface of your code should satisfy

Stack()
Stack([0, 'hello',s])
Stack()
.push(0)
.push('hello")
.push(s)

== # True
.popQ)

.push(3)

.push(s)

== # False

= W0 n W W wmwm e n

5 Solutions

[105]: | #Notice the following
print(type([]1))
print(type(1list()))
print(type([]) == list)

a=[1,2,3]
b =list(al:-1])
x=a.pop()
X,a,b,atb

<class 'list'>
<class 'list'>
True

[105]: (3, [1, 2], [1, 21, [1, 2, 1, 2])
[133]: import copy
class Stack:

def __init__(self,1=Nomne):
self.s = []

if type(l) == list:
#this would be the most gemeral solutions which works no matter the,
—~elements in 1
#self.s = copy.deepcopy(l) #In a single statement, without a loop.
~0therwise, iterate over 1
The following satisfies the requirements but wouldn't work <if 1,
—itself contains a list
for v in 1:
if type(v) == Stack:
self.s.append(Stack(v.s))
else:
self.s.append(v)
elif not 1 == Nomne: # Careful: In python None is an object. Hencey,
<list([None]) = [None]. NOT what we want!
self.s = list([1])
def push(self,x):
z=copy.deepcopy(z) #to make it work in the gemeral case, no matter,
—what object we're pushing. See bottom.
self.s.append(x)
def pop(self):
#return self.s.pop() #this is the shortest way. Alternatively, use,
—~these three steps
x = self.s[-1]
self.s = list(self.s[:-1])
return x
def len(self):
return len(self.s) #if unsure whether this would work, you can count,
—manually tterating over 1 as follows
#lL =0
#for v in self.s:
=1
return 1
def __mul__(self,B):
return Stack(self.s+B.s)
def __eq__(self,B):
if isinstance(B,self.__class__):
1 = self.len()
if B.len() != 1 : return False
for i in range(1l):
if self.s[i] !'= B.s[i]:
return False
return True
return False
def __str__(self):
msg ='<'
for e in self.s:

msg += str(e)+' '
return msg+'>'

[134]: s = Stack()
A = Stack([O0, 'hello',s])
B = Stack()

print('lengths A:',A.len(),A)

B.push(0)

B.push('hello")

B.push(s)

print('lengths B:',B.len(),B)

print('A',A,'B',B,'A==B',A == B) # True
B.pop()

s.push(3)

B.push(s)

print('A',A,'B',B,'A==B' ,A == B) # False

lengths A: 3 <0 hello <> >

lengths B: 3 <0 hello <> >

A <0 hello <> > B <0 hello <> > A==B True

A <0 hello <> > B <0 hello <3 > > A==B False

[135]: t=[]

C = Stack([0, 'hello',t])

D= Stack([0, 'hello'])

t .append (666)

D.push(t)

print('C',C,'D',D,'C==D',C==D) # Give True, but we would want it to be FAlse

The problem is that "t° in C is mot a copy of list "t° but a _refference_ to,
=1t.

Hence, when modifying t (as in t.append(666)) C also notices that change.

In order for this to work not matter the elements we create a stack with, we,
—need to use

a deepcopy in the constructor and the push

#

Ezample to show that push also needs a deepcopy mechanism

r=[55]

D.push(r)

print('D before changing r',D)

r.append(-1)

print('D After',D)

C <0 hello [666] > D <0 hello [666] > C==D True
D before changing r <0 hello [666] [55] >
D After <0 hello [666] [55, -1] >

L]

	Computer Science G11
	Term 2 Test 3
	NAME:

	1 (KtiCa) (40%) Implement a stack class. Make sure to satisfy the following requirements and definitions.
	2 (KtiCa) (40%) Implement a joining of stacks, that is, an operator that takes two stacks and returns a new stack containing the union of the both stacks' elements.
	3 (KtiCA) (20%) We may say that two stacks are equal when they store the same elements. Implement the comparision of stacks.
	Solutions

