
G11-Term2-Test3-Solutions

January 20, 2020

1 Computer Science G11

1.1 Term 2 Test 3

Date Mon Jan 20 2020

1.2 NAME:

2 1 (KtiCa) (40%) Implement a stack class. Make sure to satisfy the
following requirements and definitions.

In computer science, a stack is an abstract data type (for the sake of this problem, think of this as a
class) that serves as a collection of elements, with two principal operations: push, which adds an
element to the collection, and. pop, which removes the most recently added element that was not
yet removed.

The interface of your code should be as follows

s = Stack() #creates an empty stack
s.pop() # returns None
s.push('hello')
s.push(3)
s.len() # returns 2, i.e, the number of items in the stack
s.pop() # returns 3 removing it from the stack
s.len() # returns 1
s.push([5,7,9,'foo'])
s.len() # retutns 5
s.pop() # returns 'foo'
s.pop() # returns 9

3 2 (KtiCa) (40%) Implement a joining of stacks, that is, an operator that
takes two stacks and returns a new stack containing the union of the
both stacks’ elements.

The interface of your code should be as follows

1

A = Stack([0,2,4,6])
B = Stack([1,3,5,7])
C = A*B
C.len() # 8
C.pop() # 7
C.pop() # 5

4 3 (KtiCA) (20%) We may say that two stacks are equal when they store
the same elements. Implement the comparision of stacks.

The interface of your code should satisfy

s = Stack()
A = Stack([0,'hello',s])
B = Stack()
B.push(0)
B.push('hello')
B.push(s)
A == B # True
B.pop()
s.push(3)
B.push(s)
A == B # False

5 Solutions

[105]: #Notice the following
print(type([]))
print(type(list()))
print(type([]) == list)

a=[1,2,3]
b =list(a[:-1])
x=a.pop()
x,a,b,a+b

<class 'list'>
<class 'list'>
True

[105]: (3, [1, 2], [1, 2], [1, 2, 1, 2])

[133]: import copy

class Stack:
def __init__(self,l=None):

self.s = []

2

if type(l) == list:
#this would be the most general solutions which works no matter the␣

↪→elements in l
#self.s = copy.deepcopy(l) #In a single statement, without a loop.␣

↪→Otherwise, iterate over l
The following satisfies the requirements but wouldn't work if l␣

↪→itself contains a list
for v in l:

if type(v) == Stack:
self.s.append(Stack(v.s))

else:
self.s.append(v)

elif not l == None: # Careful: In python None is an object. Hence␣
↪→list([None]) = [None]. NOT what we want!

self.s = list([l])
def push(self,x):

x=copy.deepcopy(x) #to make it work in the general case, no matter␣
↪→what object we're pushing. See bottom.

self.s.append(x)
def pop(self):

#return self.s.pop() #this is the shortest way. Alternatively, use␣
↪→these three steps

x = self.s[-1]
self.s = list(self.s[:-1])
return x

def len(self):
return len(self.s) #if unsure whether this would work, you can count␣

↪→manually iterating over l as follows
#l = 0
#for v in self.s:
l +=1
return l

def __mul__(self,B):
return Stack(self.s+B.s)

def __eq__(self,B):
if isinstance(B,self.__class__):

l = self.len()
if B.len() != l : return False
for i in range(l):

if self.s[i] != B.s[i]:
return False

return True
return False

def __str__(self):
msg ='<'
for e in self.s:

3

msg += str(e)+' '
return msg+'>'

[134]: s = Stack()
A = Stack([0,'hello',s])
B = Stack()
print('lengths A:',A.len(),A)

B.push(0)
B.push('hello')
B.push(s)
print('lengths B:',B.len(),B)

print('A',A,'B',B,'A==B',A == B) # True
B.pop()
s.push(3)
B.push(s)
print('A',A,'B',B,'A==B',A == B) # False

lengths A: 3 <0 hello <> >
lengths B: 3 <0 hello <> >
A <0 hello <> > B <0 hello <> > A==B True
A <0 hello <> > B <0 hello <3 > > A==B False

[135]: t=[]
C = Stack([0,'hello',t])
D= Stack([0,'hello'])
t.append(666)
D.push(t)
print('C',C,'D',D,'C==D',C==D) # Give True, but we would want it to be FAlse
The problem is that `t` in C is not a copy of list `t` but a _refference_ to␣

↪→it.
Hence, when modifying t (as in t.append(666)) C also notices that change.
In order for this to work not matter the elements we create a stack with, we␣

↪→need to use
a deepcopy in the constructor and the push
#
Example to show that push also needs a deepcopy mechanism
r=[55]
D.push(r)
print('D before changing r',D)
r.append(-1)
print('D After',D)

C <0 hello [666] > D <0 hello [666] > C==D True
D before changing r <0 hello [666] [55] >
D After <0 hello [666] [55, -1] >

4

[]:

5

	Computer Science G11
	Term 2 Test 3
	NAME:

	1 (KtiCa) (40%) Implement a stack class. Make sure to satisfy the following requirements and definitions.
	2 (KtiCa) (40%) Implement a joining of stacks, that is, an operator that takes two stacks and returns a new stack containing the union of the both stacks' elements.
	3 (KtiCA) (20%) We may say that two stacks are equal when they store the same elements. Implement the comparision of stacks.
	Solutions

