Detect Floating Point Number

Check Tutorial tab to know how to to solve.

You are given a string N.

Your task is to verify that ${\it N}$ is a floating point number.

In this task, a valid float number must satisfy all of the following requirements:

- > Number can start with +, or . symbol.
 - For example:
 - **√**+4.50
 - **√**-1.0
 - **1**.5
 - **√**-.7
 - **1**+4
 - -+4.5
- > Number must contain at least 1 decimal value.

For example:

- **12.**
- **1**2.0
- > Number must have exactly one . symbol.
- > Number must not give any exceptions when converted using float(N).

Input Format

The first line contains an integer T, the number of test cases.

The next T line(s) contains a string N.

Constraints

•
$$0 < T < 10$$

Output Format

Output True or False for each test case.

Sample Input 0

```
4
4.000
-1.00
+4.54
SomeRandomStuff
```

Sample Output 0

False True True False			
i dise			

Explanation 0

4.000: O is not a digit.

-1.00: is valid. +4.54: is valid.

SomeRandomStuff: is not a number.