The Dragon Academy G11 Functions and Applications Term 3 Assignment 5 **Due date: Thu. Apr. 11 2019**

April 5, 2019

This assignment is the first one on the current unit of exponential function. See the slides of Fri. 5 Apr. 2019 in our course page.

It comprises the following exercises from the book:

- 1. Page 390, Exercises: 5, 6.
- 2. Page 400, Exercises: 5, 8.
- 3. Page 408, Exercises: 5,6 (yes, again the same numbers).
- 4. Page 415, Exercises: 1, 2.

Pictures of the pages for those lacking the book have been attached below in this document.

Study Aid	
• For help, see E Appendix.	Essential Skills
Question	Appendix

Question	Appendix
5, 6, 7, and 9	A-3
10	A-2
11	A-12

PR	ACTICE	the surfusing a calculator.	
Eva 4 .	luate questions 4 to 8 w Evaluate. a) 8 ³ b) 11 ⁴	ithout using a calculator. c) 5 ⁶ d) 19 ²	e) 4^5 f) 2^{10}
5.	Evaluate. a) $(-5)^2$ b) -5^2	c) $(-2)^3$ d) -2^3	e) $(-10)^4$ f) -10^4
6.	Evaluate. a) $(-3^3)^3$ b) $[(-3)^3]^3$	c) $[(-3)^4]^2$ d) $(-3^4)^2$	e) $(-3^3)^2$ f) $(-3^2)^3$
7.	Evaluate. a) $3^2 - 4^2$ b) $10^2 - 15^1 + 5^2$	c) $(1 + 7^2)^2$ d) $(6^2 - 4^2)^2$	e) $5^2 \times (-2)^3$ f) $8^2 \div (-4)^3$
8.	Evaluate. a) $\sqrt{25} + \sqrt{16}$	b) $\frac{\sqrt{100}}{\sqrt{25}}$	c) $\sqrt{\sqrt{81}}$
9.	Determine the exponent a) $2^{x} = 16$ b) $17^{m} = 17$	at that makes each of the c) $3^y = 27$ d) $4^x = 64$	e following true. e) $(-2)^n = -8$ f) $\cdot 5^c = 125$
	Evaluate. a) $\frac{4}{7} - \frac{3}{4}$ b) $\frac{7}{9} \div \frac{4}{5}$	c) $\frac{2}{3}\left(\frac{5}{4}\right)$ d) $\frac{2}{3} + \left(\frac{5}{4}\right)$	e) $\frac{4}{9}\left(\frac{9}{5} - \frac{3}{10}\right)$ f) $\left(\frac{9}{10}\right)\frac{3}{7} \div \frac{3}{14}$
		/	(10) / 14

1t' at

11. Determine the first and second finite differences for each set of data. State whether each set represents a linear or a quadratic relationship.

x	У
-3	14
-2	10
- 1	6
0	2
1	-2
2	-6
3	-10

		linear	
)	x	У	
	-3	11.5	
	-2	6.5	
	-1	3.5	
	0	2.5	
	1	3.5	
	2	6.5	
	3	11.5	

$\frac{4}{9}\left(\frac{9}{5}\right)$	$-\frac{3}{10}$	
	$\frac{3}{7} \div \frac{3}{14}$	
h set c relatio		
x	у	
-6	15	
-4	-3	

-13

-15

-9

5

27

4

6

c)

C. Use sphe

Today detern

Accord • be sp • be m • have • have • have

Ho vol

A. Use

B,

the

Rep

A CC Soc pig

E. LI

Use e each

E Calcu

ls the Explai

Getting Started	
	Getting Started

Sa.

PRACTISING

4. Evaluate.
a)
$$10^{-2}$$
c) $\left(\frac{1}{2}\right)^{-5}$
e) $\frac{1}{(-9)^2}$
b) $(-4)^{-2}$
d) $\left(\frac{1}{7}\right)^{-3}$
f) $(-5)^0$

5. Simplify. Write each expression as a single power with a positive exponent.

a)
$$9^7 \times 9^{-3}$$

b) $6^{-3} \div 6^{-5}$
c) $8^6 \div 8^{-5}$
d) $17^{-4} \div 17^{-6}$
e) $(-3)^{-8} \times (-3)^{-3}$
f) $(-4)^{-5} \times (-4)^{-5}$

6. Simplify. Write each expression as a single power with a positive exponent.

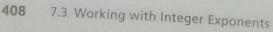
a)
$$2^{4}(2^{2}) \div 2^{-6}$$
 c) $\frac{(-12^{3})^{-1}}{(-12)^{7}}$ e) $\frac{9^{4}(9^{3})}{9^{12}}$
b) $-5 \times (-5^{4})^{-3}$ d) $\left(\frac{3^{4}}{3^{6}}\right)^{-1}$ f) $((7^{2})^{-3})^{-4}$

7. Simplify. Write each expression as a single power with a positive exponent.

a)
$$\frac{11^{-2}(11^3)}{(11^{-2})^4}$$
 c) $\left(\frac{4^{-3}}{4^{-2}}\right)^{-3}$ e) $\frac{(-8^{-1})(-8^{-3})}{(-8^{-2})^3}$
b) $\left(\frac{9^{-2}}{(9^2)^2}\right)^2$ d) $\left(\frac{10}{10^{-3}}\right)^2 \left(\frac{10^5}{10^7}\right)$ f) $\left(\frac{(5^3)^2}{5(5^6)}\right)^{-1}$

8. Simplify, then evaluate each expression. Leave answers as fractions or integers.

a)
$$13^3 \times 13^{-4}$$
 c) $\left(\frac{10^{-3}}{10^{-5}}\right)^2$ e) $\frac{-2(-2^{-3})}{(-2)^4}$
b) $\frac{3^{-2}}{3^{-6}}$ d) $6^{-2}(6^{-2})^{-1}$ f) $\left(\frac{5^{-2}}{5}\right)^{-1}$


9. Evaluate. Leave answers as fractions or integers.

a)
$$3^{-2} - 9^{-1}$$
 c) $8^{-2} + (4^{-1})^2$ e) $12(4^0 - 3^{-2})$

b)
$$4^{-2} + 3^0 - 2^{-3}$$
 d) $\left(\frac{1}{2}\right)^{-1} + \left(\frac{1}{3}\right)^{-1}$ f) $\frac{4^2}{2^5}$

Scientific notation can be used to represent very large and very small numbers. The diameter of Earth is about 1.276 × 10⁷ m, while the diameter of a plant cell is about 1.276 × 10⁻⁵ m. Explain why negative exponents are used in scientific notation to represent very small numbers.

PRACTISING

K

X

4. Create three examples to help a classmate learn about the followingrelationships:

NN

- a) the result of multiplying powers with the same base
- b) the result of dividing powers with the same base
- c) the result of raising a power to an exponent

5. Simplify. Write as a single power.

a)	$3(3^5) \div 3^3$	c) $(7^8 \div 7^5)(7^2)$	e) $\frac{9^{12}}{9(9^{10})}$
Ь)	$10^9 \div (10^3 \times 10^2)$	d) $\frac{(6^2)(6^{11})}{6^8}$	f) $\frac{(8^7)(8^3}{8^6(8^2)}$

6. Simplify. Write as a single power.

a)	$(2^5)^3 \times 2^3$	c) $(7^8)(7^5)^2$	e) $\frac{10(10)}{(10^2)}$
b)	$5^9 \div (5^3)^2$	d) $\frac{(8^2)^5}{8^8}$	f) $\frac{(4^7)^3}{4^9(4^{11})}$

7. Simplify. Write as a single power.

a)
$$10(10^5)(10^3) \div (10^3)^2$$
 c) $\left(\frac{13(13^{12})}{13^7}\right)^2$
b) $\frac{(8^8)(8^3)^3}{8^3(8^{11})}$ d) $\frac{(5^4)^2(5^5)^2}{5^2(5^{13})}$

8. Simplify, then evaluate without using a calculator.

a)
$$\left(\frac{4}{3}\right)\left(\frac{4}{3}\right)^2$$

b) $\left(\frac{1}{9}\right)^4 \div \left(\frac{1}{9}\right)^2$
c) $\left(\left(\frac{2}{5}\right)^2\right)^2$
d) $\left(\frac{5}{4}\right)^5\left(\frac{5}{4}\right)^3 \div \left(\frac{5}{4}\right)^6$

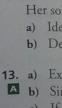
9. Simplify.

a)

b)

$$\frac{x^{4}(x^{2})^{2}}{(m^{5})^{2}}$$
c) $(y(y^{6}))^{3}$
e) $a^{2}a^{2}$

$$\frac{(m^{5})^{2}}{m^{8}}$$
d) $((a^{2})^{2})^{2}$
f) $\frac{b(b^{5})}{b^{5}}$


10. Write each power in simplified form.

a) 4^3 as a base 2 power d) $(-8)^4$ as a base -2 power b) 9^5 as a base 3 power e) $\left(\frac{1}{4}\right)^3$ as a base $\frac{1}{2}$ power c) 27^5 as a base 3 power f) $\left(\frac{1}{25}\right)^4$ as a base $\frac{1}{5}$ power **11.** Simplify**a)** (2²)

-, (-)

b)
$$\frac{1}{(3^2)}$$

12. Clare w $3^2(2^2)^2$


```
c) If
14. a) W
```

```
b) If
```

Extendi

- **15.** a) E
 - **b**) E
 - 2
- **16.** Simp
 - a) (
- 17. Sim
 - a)
- 18. If A

a)

In Summary

Key Ideas

A power with a rational exponent is equivalent to a radical. The rational exponent $\frac{1}{n}$ indicates the *n*th root of the base. If n > 1 and $n \in \mathbf{N}$, then $b^{\frac{1}{n}} = \sqrt[n]{b}$, where $b \neq 0$.

9.

If $m \neq 1$ and if m and n are both positive integers, then

$$b_{n}^{m} = \left(\sqrt[n]{b}\right)^{m} = \sqrt[n]{b^{m}}, \text{ where } b \neq 0.$$

Need to Know

- The exponent laws that apply to powers with integer exponents also apply to powers with rational exponents.
- The power button on a scientific calculator can be used to evaluate rational exponents.
- Some roots of negative numbers cannot be determined. For example, -16 does not have a real-number square root, since $(-4)^2 = (-4) \times (-4) = +16$. Odd roots can have negative bases, but even ones cannot.
- Since radicals can be written as powers with rational exponents:
- Their products are equivalent to the products of powers. This means that $\sqrt{a} \times \sqrt{b} \times \sqrt{c} = \sqrt{a} \times b \times c$, because $a^{\frac{1}{2}} \times b^{\frac{1}{2}} \times c^{\frac{1}{2}} = (abc)^{\frac{1}{2}}$, where a, b, and c > 0.

• Their quotients are equivalent to the quotient of powers. This means that

 $\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}, \text{ because } \frac{a^{\frac{1}{2}}}{b^{\frac{1}{2}}} = \left(\frac{a}{b}\right)^{\frac{1}{2}}, \text{ where } a, b, \text{ and } c > 0.$

CHECK Your Understanding

- 1. Write in radical form. Then evaluate without using a calculator.
 - a) $49^{\frac{1}{2}}$ c) $81^{\frac{1}{4}}$ e) $16^{0.29}$ b) $(-125)^{\frac{1}{3}}$ d) $100^{\frac{1}{2}}$ f) $-(144)^{0.5}$
- 2. Write in exponent form. Then evaluate.

a)
$$\sqrt[4]{1024}$$

b) $\sqrt[5]{1024}$
c) $\sqrt[3]{27^4}$
d) $\left(\sqrt[3]{-216}\right)^5$
e) $\sqrt[7]{16}$
f) $(\sqrt{25})^-$

3. Use your calculator to evaluate each expression to the nearest

hundredth.		-2
2	c) $\sqrt[15]{4421}$	e) $10^{\frac{-2}{3}}$
a) $6^{\frac{2}{5}}$	-,	f) $200^{-0.4}$
b) $0.0625^{\frac{1}{4}}$	d) 144 ^{0.25}	1) 200

Chapter 7 Exponential Functions

nultiplied the

wer and then

ns involving

ponents

an

added the

r), 1